Cargando…

Lie groups and Lie algebras for physicists /

The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corres...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Das, Ashok (Autor), Okubo, Susumu (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, [2014]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn892970906
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 141015t20142015nju o 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d E7B  |d YDXCP  |d OTZ  |d OCLCF  |d EBLCP  |d DEBSZ  |d OCLCQ  |d IDEBK  |d AGLDB  |d LIP  |d OCLCQ  |d OCLCO  |d VTS  |d CEF  |d OCLCQ  |d STF  |d M8D  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 893332816  |a 953680001 
020 |a 9789814603287  |q (electronic bk.) 
020 |a 9814603287  |q (electronic bk.) 
020 |z 9789814603270 
029 1 |a AU@  |b 000053968071 
029 1 |a DEBBG  |b BV043030425 
029 1 |a DEBSZ  |b 416434878 
029 1 |a DEBSZ  |b 44650307X 
029 1 |a DEBSZ  |b 455000565 
029 1 |a AU@  |b 000074664199 
035 |a (OCoLC)892970906  |z (OCoLC)893332816  |z (OCoLC)953680001 
050 4 |a QA252.3 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
049 |a UAMI 
100 1 |a Das, Ashok,  |e author. 
245 1 0 |a Lie groups and Lie algebras for physicists /  |c Ashok Das, Susumu Okubo. 
264 1 |a New Jersey :  |b World Scientific,  |c [2014] 
264 4 |c ©2014 
264 4 |c ©2015 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed October 15, 2014). 
505 0 |a 1. Introduction to groups. 1.1. Definition of a group. 1.2. Examples of commonly used groups in physics. 1.3. Group manifold. 1.4. References -- 2. Representation of groups. 2.1. Matrix representation of a group. 2.2. Unitary and irreducible representations. 2.3. Group integration. 2.4. Peter-Weyl theorem. 2.5. Orthogonality relations. 2.6. Character of a representation. 2.7. References -- 3. Lie algebras. 3.1. Definition of a Lie algebra. 3.2. Examples of commonly used Lie algebras in physics. 3.3. Structure constants and the Killing form. 3.4. Simple and semi-simple Lie algebras. 3.5. Universal enveloping Lie algebra. 3.6. References -- 4. Relationship between Lie algebras and Lie groups. 4.1. Infinitesimal group and the Lie algebra. 4.2. Lie groups from Lie algebras. 4.3. Baker-Campbell-Hausdorff formula. 4.4. Ray representation. 4.5. References -- 5. Irreducible tensor representations and Young tableau. 5.1. Irreducible tensor representations of U(N). 5.2. Young tableau. 5.3. Irreducible tensor representations of SU(N). 5.4. Product representation and branching rule. 5.5. Representations of SO(N) groups. 5.6. Double valued representation of SO(3). 5.7. References -- 6. Clifford algebra. 6.1. Clifford algebra. 6.2. Charge conjugation. 6.3. Clifford algebra and the O(N) group. 6.4. References -- 7. Lorentz group and the Dirac equation. 7.1. Lorentz group. 7.2. Generalized Clifford algebra. 7.3. Dirac equation. 7.4. References -- 8. Yang-Mills gauge theory. 8.1. Gauge field dynamics. 8.2. Fermion dynamics. 8.3. Quantum chromodynamics. 8.4. References -- 9. Quark model and SU[symbol](3) symmetry. 9.1. SU[symbol] flavor symmetry. 9.2. SU[symbol](3) flavor symmetry breaking. 9.3. Some applications in nuclear physics. 9.4. References -- 10. Casimir invariants and adjoint operators. 10.1. Computation of the Casimir invariant I(p). 10.2. Symmetric Casimir invariants. 10.3. Casimir invariants of so(N). 10.4. Generalized Dynkin indices. 10.5. References -- 11. Root system of Lie algebras. 11.1. Cartan-Dynkin theory. 11.2. Lie algebra A[symbol] = su([symbol]+ 1). 11.3. Lie algebra D[symbol] = so(2[symbol]). 11.3.1. D4 = so(8) and the triality relation. 11.4. Lie algebra B[symbol] = so(2[symbol] + 1). 11.5. Lie algebra C[symbol] = sp(2[symbol]). 11.6. Exceptional Lie algebras. 11.7. References. 
520 |a The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Lie algebras. 
650 0 |a Group theory. 
650 6 |a Algèbres de Lie. 
650 6 |a Théorie des groupes. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Group theory.  |2 fast  |0 (OCoLC)fst00948521 
650 7 |a Lie algebras.  |2 fast  |0 (OCoLC)fst00998125 
700 1 |a Okubo, Susumu,  |e author. 
776 0 8 |i Print version:  |a Das, Ashok.  |t Lie Groups and Lie Algebras for Physicists.  |d Singapore : World Scientific Publishing Company, ©2014  |z 9789814603270 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862331  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1812627 
938 |a ebrary  |b EBRY  |n ebr10951409 
938 |a EBSCOhost  |b EBSC  |n 862331 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis29887456 
938 |a YBP Library Services  |b YANK  |n 12102387 
994 |a 92  |b IZTAP