Cargando…

Quantum foundations and open quantum systems : lecture notes of the advanced school /

The Advanced School on Quantum Foundations and Open Quantum Systems was an exceptional combination of lectures. These comprise lectures in standard physics and investigations on the foundations of quantum physics. On the one hand it included lectures on quantum information, quantum open systems, qua...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Nieuwenhuizen, Theo M. (Editor ), Pombo, Claudia (Editor ), Furtado, Claduio (Editor ), Khrenikov, Andrei Yu (Editor ), Pedrosa, Inácio A. (Editor ), Špička, Václav (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, [2014]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface; Contents; 1. The Physics of Quantum Computation; 1. Preliminary concepts; 1.1. From miniaturization to quantum technologies; 1.1.1. Semiclassical electrons in electronic devices; 1.1.2. Incoherent nanophysics; 1.1.3. Coherent nanoelectronics; 1.2. From bits to qubits; 1.2.1. Classical computation; 1.2.2. Reversibility and quantum computers; 1.3. Superpositions, entanglement, quantum parallelism; 1.3.1. The Bloch sphere; 1.3.2. Encoding a qubit; 1.3.3. Entanglement; 1.3.4. Quantum parallelism; 1.3.5. Quantum gates; 1.4. Quantum speedup.
  • 1.5. Ingredients of quantum algorithms: Interference and measurement2. Quantum physics and quantum information; 2.1. Quantum dynamics of qubits and gates; 2.1.1. Single-qubit gates; 2.1.2. How to perform single-qubit gates; 2.1.3. Two-qubit gates; 2.2. Requirements for quantum hardware; 2.3. State of the art; 3. Decoherence; 3.1. Weak coupling theory; 3.2. Approximate approaches for decoherence due to classical low frequency noise; 4. Current implementations of quantum bits; 4.1. Superconducting qubits; 4.1.1. Superconductivity; 4.1.2. Josephson effect; 4.1.3. Cooper-pair-box based qubits.
  • 4.1.4. Phase qubits4.1.5. Flux qubits; 4.1.6. Time-domain measurements and estimates of T1 and T2; 4.1.7. Coupling qubits: towards the implementation of quantum algorithms; 4.2. Quantum dots and atomic systems in solid-state hosts; 4.3. Liquid NMR; 4.4. Trapped ions and cold atoms; 4.5. Atoms in cavity QED; 4.6. Photons; 5. Conclusions and perspectives; Acknowledgments; References; 2. Quantum Information in Communication and Imaging; 1. From bit to qubit; 1.1. Introduction; 1.2. From bits to qubits; 1.3. Optical qubits; 1.4. Spontaneous parametric down conversion.
  • 1.5. Concurrence in down conversion1.6. Schmidt number and von Neumann entropy; 1.7. Other measures of entanglement; 2. Communication and cryptography; 2.1. Information and channel capacity; 2.2. Quantum key distribution; 2.3. Quantum ghost imaging and secure image distribution; 3. Qudits and imaging; 3.1. Orbital angular momentum; 3.2. Entangled OAM pairs; 3.3. Quantum cryptography with OAM; 3.4. Digital spiral imaging; 3.5. Joint OAM spectra; 3.6. Mutual information and symmetry; 3.7. Imaging with entangled OAM; 3.8. Pixel entanglement; 3.9. Conclusions; References.
  • 3. Electron Systems Out of Equilibrium: Nonequilibrium Green's Function Approach1. Introduction; 1.1. Challenges, open questions, techniques; 1.2. Non-equilibrium Green's functions; 1.2.1. Note on the NGF history; 1.3. Topics; 1.3.1. Formulation of transport theory and NGF; 1.3.2. Initial conditions; 1.3.3. Transport in open systems; 1.3.4. Reconstruction theorems; 1.3.5. NGF and kinetic equations; 1.4. Advantages of NGF; 2. Transport theory: Prototype description of nonequilibrium systems; 2.1. Prototype transport equation: Boltzmann equation; 2.2. Transport theory: Physical concepts.