Cargando…

Spanning tree results for graphs and multigraphs : a matrix-theoretic approach /

This book is concerned with the optimization problem of maximizing the number of spanning trees of a multigraph. Since a spanning tree is a minimally connected subgraph, graphs and multigraphs having more of these are, in some sense, immune to disconnection by edge failure. We employ a matrix-theore...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gross, Daniel J. (Autor), Saccoman, John T. (Autor), Suffel, Charles L. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, [2014]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn892970218
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 141015t20142015nju o 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d UKMGB  |d CDX  |d OCLCF  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 016914039  |2 Uk 
019 |a 893332790 
020 |a 9789814566049  |q (electronic bk.) 
020 |a 9814566047  |q (electronic bk.) 
020 |z 9789814566032 
029 1 |a AU@  |b 000058200388 
029 1 |a DEBBG  |b BV043027057 
029 1 |a DEBSZ  |b 416434827 
029 1 |a DEBSZ  |b 446420654 
029 1 |a DEBSZ  |b 454912234 
029 1 |a AU@  |b 000073140648 
035 |a (OCoLC)892970218  |z (OCoLC)893332790 
050 4 |a QA166.2 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.5  |2 23 
049 |a UAMI 
100 1 |a Gross, Daniel J.,  |e author. 
245 1 0 |a Spanning tree results for graphs and multigraphs :  |b a matrix-theoretic approach /  |c Daniel J. Gross, John T. Saccoman, Charles L. Suffel. 
264 1 |a New Jersey :  |b World Scientific,  |c [2014] 
264 4 |c ©2015 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed October 15, 2014). 
505 0 |a Preface; Contents; 0 An Introduction to Relevant Graph Theory and Matrix Theory; 0.1 Graph Theory; 0.2 Matrix Theory; 1 Calculating the Number of Spanning Trees: The Algebraic Approach; 1.1 The Node-Arc Incidence Matrix; 1.2 Laplacian Matrix; 1.3 Special Graphs; 1.4 Temperley's B-Matrix; 1.5 Multigraphs; 1.6 Eigenvalue Bounds for Multigraphs; 1.7 Multigraph Complements; 1.8 Two Maximum Tree Results; 2 Multigraphs with the Maximum Number of Spanning Trees: An Analytic Approach; 2.1 The Maximum Spanning Tree Problem; 2.2 Two Maximum Spanning Tree Results; 3 Threshold Graphs. 
505 8 |a 3.1 Characteristic Polynomials of Threshold Graphs3.2 Minimum Number of Spanning Trees; 3.3 Spanning Trees of Split Graphs; 4 Approaches to the Multigraph Problem; 5 Laplacian Integral Graphs and Multigraphs; 5.1 Complete Graphs and Related Structures; 5.2 Split Graphs and Related Structures; 5.3 Laplacian Integral Multigraphs; Bibliography; Index. 
520 |a This book is concerned with the optimization problem of maximizing the number of spanning trees of a multigraph. Since a spanning tree is a minimally connected subgraph, graphs and multigraphs having more of these are, in some sense, immune to disconnection by edge failure. We employ a matrix-theoretic approach to the calculation of the number of spanning trees. The authors envision this as a research aid that is of particular interest to graduate students or advanced undergraduate students and researchers in the area of network reliability theory. This would encompass graph theorists of all s. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Trees (Graph theory) 
650 0 |a Algebra  |x Graphic methods. 
650 6 |a Arbres (Théorie des graphes) 
650 6 |a Algèbre  |x Méthodes graphiques. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Algebra  |x Graphic methods  |2 fast 
650 7 |a Trees (Graph theory)  |2 fast 
700 1 |a Saccoman, John T.,  |e author. 
700 1 |a Suffel, Charles L.,  |e author. 
776 0 8 |i Print version:  |a Gross, Daniel J.  |t Spanning Tree Results for Graphs and Multigraphs : A Matrix-Theoretic Approach.  |d Singapore : World Scientific Publishing Company, ©2014  |z 9789814566032 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862322  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 30005449 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1812616 
938 |a EBSCOhost  |b EBSC  |n 862322 
994 |a 92  |b IZTAP