|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn892911419 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141014s2014 nju ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d YDXCP
|d CDX
|d EBLCP
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d D6H
|d AGLDB
|d OCLCQ
|d VNS
|d OCLCQ
|d VTS
|d M8D
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 893332782
|
020 |
|
|
|a 9789814452625
|q (electronic bk.)
|
020 |
|
|
|a 9814452629
|q (electronic bk.)
|
020 |
|
|
|z 9789814452618
|
020 |
|
|
|z 9814452610
|
029 |
1 |
|
|a AU@
|b 000058200708
|
029 |
1 |
|
|a DEBBG
|b BV043958540
|
029 |
1 |
|
|a DEBSZ
|b 456341250
|
029 |
1 |
|
|a AU@
|b 000073140939
|
035 |
|
|
|a (OCoLC)892911419
|z (OCoLC)893332782
|
043 |
|
|
|a n-us---
|
050 |
|
4 |
|a HG6024.U6
|b C443 2014eb
|
072 |
|
7 |
|a BUS
|x 027000
|2 bisacsh
|
082 |
0 |
4 |
|a 332.64/23
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Chiarella, Carl.
|
245 |
1 |
4 |
|a The numerical solution of the American option pricing problem :
|b finite difference and transform approaches /
|c Carl Chiarella (University of Technology, Sydney, Australia), Boda Kang (University of York, UK), Gunter H Meyer (Georgia Institute of Technology, USA).
|
264 |
|
1 |
|a New Jersey :
|b World Scientific Pub.,
|c 2014.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Introduction -- The Merton and Heston model for a call -- American call options under jump-diffusion processes -- American option prices under stochastic volatility and jump-diffusion dynamics-the transform approach -- Representation and numerical approximation of American option prices under Heston Fourier Cosine expansion approach -- A numerical approach to pricing American call options under SVJD -- Conclusions -- Bibliography -- Index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pr.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Options (Finance)
|z United States.
|
650 |
|
0 |
|a Options (Finance)
|x Mathematical models.
|
650 |
|
6 |
|a Options (Finances)
|z États-Unis.
|
650 |
|
6 |
|a Options (Finances)
|x Modèles mathématiques.
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Finance.
|2 bisacsh
|
650 |
|
7 |
|a Options (Finance)
|2 fast
|
650 |
|
7 |
|a Options (Finance)
|x Mathematical models
|2 fast
|
651 |
|
7 |
|a United States
|2 fast
|
700 |
1 |
|
|a Kang, Boda.
|
700 |
1 |
|
|a Meyer, Gunter H.
|
776 |
0 |
8 |
|i Print version:
|a Chiarella, Carl.
|t Numerical solution of the American option pricing problem
|z 9789814452618
|w (DLC) 2014021380
|w (OCoLC)881591759
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862306
|z Texto completo
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 30005457
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1812610
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 862306
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12102351
|
994 |
|
|
|a 92
|b IZTAP
|