Differential operators on spaces of variable integrability /
The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of thei...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New Jersey :
World Scientific,
[2014]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Preliminaries. 1.1. The geometry of Banach spaces. 1.2. Spaces with variable exponent
- 2. Sobolev spaces with variable exponent. 2.1. Definition and functional-analytic properties. 2.2. Sobolev embeddings. 2.3. Compact embeddings. 2.4. Riesz potentials. 2.5. Poincare-type inequalities. 2.6. Embeddings. 2.7. Holder spaces with variable exponents. 2.8. Compact embeddings revisited
- 3. The p[symbol]-Laplacian. 3.1. Preliminaries. 3.2. The p[symbol]-Laplacian. 3.3. Stability with respect to integrability
- 4. Eigenvalues. 4.1. The derivative of the modular. 4.2. Compactness and Eigenvalues. 4.3. Modular Eigenvalues. 4.4. Stability with respect to the exponent. 4.5. Convergence properties of the Eigenfunctions
- 5. Approximation on Lp spaces. 5.1. s-numbers and n-widths. 5.2. A Sobolev embedding. 5.3. Integral operators.