|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn885907632 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
140808t20142014nju ob 001 0 eng d |
040 |
|
|
|a YDXCP
|b eng
|e rda
|e pn
|c YDXCP
|d OCLCO
|d N$T
|d OSU
|d OCLCQ
|d OCLCF
|d AGLDB
|d OCLCQ
|d VTS
|d OTZ
|d STF
|d LEAUB
|d UKAHL
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9789814596329
|q (electronic bk.)
|
020 |
|
|
|a 9814596329
|q (electronic bk.)
|
020 |
|
|
|z 9789814596312
|q (hardcover ;
|q alk. paper)
|
020 |
|
|
|z 9814596310
|q (hardcover ;
|q alk. paper)
|
029 |
1 |
|
|a AU@
|b 000053190061
|
029 |
1 |
|
|a CHBIS
|b 010217705
|
029 |
1 |
|
|a CHVBK
|b 324921624
|
029 |
1 |
|
|a DEBBG
|b BV043030662
|
029 |
1 |
|
|a DEBSZ
|b 446508993
|
029 |
1 |
|
|a NZ1
|b 15910676
|
029 |
1 |
|
|a AU@
|b 000074604611
|
035 |
|
|
|a (OCoLC)885907632
|
050 |
|
4 |
|a QA323
|b .E25 2014
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.73
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Edmunds, D. E.
|q (David Eric),
|e author.
|
245 |
1 |
0 |
|a Differential operators on spaces of variable integrability /
|c David E. Edmunds, University of Sussex, UK, Jan Lang, the Ohio State University, USA, Osvaldo Mendez, the University of Texas at El Paso, USA.
|
264 |
|
1 |
|a New Jersey :
|b World Scientific,
|c [2014]
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (xiv, 208 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 197-201) and indexes.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a 1. Preliminaries. 1.1. The geometry of Banach spaces. 1.2. Spaces with variable exponent -- 2. Sobolev spaces with variable exponent. 2.1. Definition and functional-analytic properties. 2.2. Sobolev embeddings. 2.3. Compact embeddings. 2.4. Riesz potentials. 2.5. Poincare-type inequalities. 2.6. Embeddings. 2.7. Holder spaces with variable exponents. 2.8. Compact embeddings revisited -- 3. The p[symbol]-Laplacian. 3.1. Preliminaries. 3.2. The p[symbol]-Laplacian. 3.3. Stability with respect to integrability -- 4. Eigenvalues. 4.1. The derivative of the modular. 4.2. Compactness and Eigenvalues. 4.3. Modular Eigenvalues. 4.4. Stability with respect to the exponent. 4.5. Convergence properties of the Eigenfunctions -- 5. Approximation on Lp spaces. 5.1. s-numbers and n-widths. 5.2. A Sobolev embedding. 5.3. Integral operators.
|
520 |
|
|
|a The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of their intrinsic mathematical importance as natural, interesting examples of non-rearrangement-invariant function spaces but also in view of their applications, which include the mathematical modeling of electrorheological fluids and image restoration. The main focus of this book is to provide a solid functional-analytic background for the study of differential operators on spaces with variable integrability. It includes some novel stability phenomena which the authors have recently discovered. At the present time, this is the only book which focuses systematically on differential operators on spaces with variable integrability. The authors present a concise, natural introduction to the basic material and steadily move toward differential operators on these spaces, leading the reader quickly to current research topics.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Function spaces.
|
650 |
|
0 |
|a Sobolev spaces.
|
650 |
|
0 |
|a Differential operators.
|
650 |
|
6 |
|a Espaces fonctionnels.
|
650 |
|
6 |
|a Espaces de Sobolev.
|
650 |
|
6 |
|a Opérateurs différentiels.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Differential operators
|2 fast
|
650 |
|
7 |
|a Function spaces
|2 fast
|
650 |
|
7 |
|a Sobolev spaces
|2 fast
|
700 |
1 |
|
|a Lang, Jan,
|e author.
|
700 |
1 |
|
|a Mendez, Osvaldo
|q (Osvaldo David),
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Edmunds, D.E. (David Eric).
|t Differential operators on spaces of variable integrability.
|d New Jersey : World Scientific, 2014
|z 9789814596312
|w (DLC) 2014015285
|w (OCoLC)871789716
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=824747
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26954554
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 824747
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12012453
|
994 |
|
|
|a 92
|b IZTAP
|