Cargando…

Differential operators on spaces of variable integrability /

The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of thei...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Edmunds, D. E. (David Eric) (Autor), Lang, Jan (Autor), Mendez, Osvaldo (Osvaldo David) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, [2014]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn885907632
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mn|||||||||
008 140808t20142014nju ob 001 0 eng d
040 |a YDXCP  |b eng  |e rda  |e pn  |c YDXCP  |d OCLCO  |d N$T  |d OSU  |d OCLCQ  |d OCLCF  |d AGLDB  |d OCLCQ  |d VTS  |d OTZ  |d STF  |d LEAUB  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9789814596329  |q (electronic bk.) 
020 |a 9814596329  |q (electronic bk.) 
020 |z 9789814596312  |q (hardcover ;  |q alk. paper) 
020 |z 9814596310  |q (hardcover ;  |q alk. paper) 
029 1 |a AU@  |b 000053190061 
029 1 |a CHBIS  |b 010217705 
029 1 |a CHVBK  |b 324921624 
029 1 |a DEBBG  |b BV043030662 
029 1 |a DEBSZ  |b 446508993 
029 1 |a NZ1  |b 15910676 
029 1 |a AU@  |b 000074604611 
035 |a (OCoLC)885907632 
050 4 |a QA323  |b .E25 2014 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.73  |2 23 
049 |a UAMI 
100 1 |a Edmunds, D. E.  |q (David Eric),  |e author. 
245 1 0 |a Differential operators on spaces of variable integrability /  |c David E. Edmunds, University of Sussex, UK, Jan Lang, the Ohio State University, USA, Osvaldo Mendez, the University of Texas at El Paso, USA. 
264 1 |a New Jersey :  |b World Scientific,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource (xiv, 208 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 197-201) and indexes. 
588 0 |a Print version record. 
505 0 |a 1. Preliminaries. 1.1. The geometry of Banach spaces. 1.2. Spaces with variable exponent -- 2. Sobolev spaces with variable exponent. 2.1. Definition and functional-analytic properties. 2.2. Sobolev embeddings. 2.3. Compact embeddings. 2.4. Riesz potentials. 2.5. Poincare-type inequalities. 2.6. Embeddings. 2.7. Holder spaces with variable exponents. 2.8. Compact embeddings revisited -- 3. The p[symbol]-Laplacian. 3.1. Preliminaries. 3.2. The p[symbol]-Laplacian. 3.3. Stability with respect to integrability -- 4. Eigenvalues. 4.1. The derivative of the modular. 4.2. Compactness and Eigenvalues. 4.3. Modular Eigenvalues. 4.4. Stability with respect to the exponent. 4.5. Convergence properties of the Eigenfunctions -- 5. Approximation on Lp spaces. 5.1. s-numbers and n-widths. 5.2. A Sobolev embedding. 5.3. Integral operators. 
520 |a The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of their intrinsic mathematical importance as natural, interesting examples of non-rearrangement-invariant function spaces but also in view of their applications, which include the mathematical modeling of electrorheological fluids and image restoration. The main focus of this book is to provide a solid functional-analytic background for the study of differential operators on spaces with variable integrability. It includes some novel stability phenomena which the authors have recently discovered. At the present time, this is the only book which focuses systematically on differential operators on spaces with variable integrability. The authors present a concise, natural introduction to the basic material and steadily move toward differential operators on these spaces, leading the reader quickly to current research topics. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Function spaces. 
650 0 |a Sobolev spaces. 
650 0 |a Differential operators. 
650 6 |a Espaces fonctionnels. 
650 6 |a Espaces de Sobolev. 
650 6 |a Opérateurs différentiels. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Differential operators  |2 fast 
650 7 |a Function spaces  |2 fast 
650 7 |a Sobolev spaces  |2 fast 
700 1 |a Lang, Jan,  |e author. 
700 1 |a Mendez, Osvaldo  |q (Osvaldo David),  |e author. 
776 0 8 |i Print version:  |a Edmunds, D.E. (David Eric).  |t Differential operators on spaces of variable integrability.  |d New Jersey : World Scientific, 2014  |z 9789814596312  |w (DLC) 2014015285  |w (OCoLC)871789716 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=824747  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26954554 
938 |a EBSCOhost  |b EBSC  |n 824747 
938 |a YBP Library Services  |b YANK  |n 12012453 
994 |a 92  |b IZTAP