Cargando…

Basic theory of fractional differential equations /

This invaluable book is devoted to a rapidly developing area on the research of the qualitative theory of fractional differential equations. It is self-contained and unified in presentation, and provides readers the necessary background material required to go further into the subject and explore th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zhou, Yong, 1964-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Hackensack] New Jersey : World Scientific, 2014.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn883632064
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 140714s2014 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d E7B  |d OSU  |d OCLCQ  |d OCLCF  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d M8D  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 889267359 
020 |a 9789814579902  |q (electronic bk.) 
020 |a 9814579904  |q (electronic bk.) 
020 |z 9789814579896 
020 |z 9814579890 
029 1 |a AU@  |b 000053331058 
029 1 |a CHBIS  |b 010217716 
029 1 |a CHVBK  |b 331090821 
029 1 |a DEBBG  |b BV043026661 
029 1 |a DEBSZ  |b 446411809 
029 1 |a NZ1  |b 15907930 
029 1 |a AU@  |b 000074657548 
035 |a (OCoLC)883632064  |z (OCoLC)889267359 
050 4 |a QA372  |b .Z47 2014eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.352  |2 23 
049 |a UAMI 
100 1 |a Zhou, Yong,  |d 1964- 
245 1 0 |a Basic theory of fractional differential equations /  |c by Yong Zhou (Xiangtan University, China). 
264 1 |a [Hackensack] New Jersey :  |b World Scientific,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a 1. Preliminaries. 1.1. Introduction. 1.2. Some notations, concepts and lemmas. 1.3. Fractional calculus. 1.4. Some Results from Nonlinear Analysis. 1.5. Semigroups -- 2. Fractional functional differential equations. 2.1. Introduction. 2.2. Neutral equations with bounded delay. 2.3. p-type neutral equations. 2.4. Neutral equations with infinite delay. 2.5. Iterative functional differential equations. 2.6. Notes and remarks -- 3. Fractional ordinary differential equations in Banach spaces. 3.1. Introduction. 3.2. Cauchy problems via measure of noncompactness method. 3.3. Cauchy problems via topological degree method. 3.4. Cauchy problems via Picard operators technique. 3.5. Notes and remarks -- 4. Fractional abstract evolution equations. 4.1. Introduction. 4.2. Evolution equations with Riemann-Liouville derivative. 4.3. Evolution equations with Caputo derivative. 4.4. Nonlocal Cauchy problems for evolution equations. 4.5. Abstract Cauchy problems with almost sectorial operators. 4.6. Notes and remarks -- 5. Fractional boundary value problems via critical point theory. 5.1. Introduction. 5.2. Existence of solution for BVP with left and right fractional integrals. 5.3. Multiple solutions for BVP with parameters. 5.4. Infinite solutions for BVP with left and right fractional integrals. 5.5. Existence of solutions for BVP with left and right fractional derivatives. 5.6. Notes and remarks -- 6. Fractional partial differential equations. 6.1. Introduction. 6.2. Fractional Euler-Lagrange equations. 6.3. Time-fractional diffusion equations. 6.4. Fractional Hamiltonian systems. 6.5. Fractional Schrodinger equations. 6.6. Notes and remarks. 
520 |a This invaluable book is devoted to a rapidly developing area on the research of the qualitative theory of fractional differential equations. It is self-contained and unified in presentation, and provides readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the Picard operators technique, critical point theory and semigroups theory. Based on research work carried. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Fractional differential equations. 
650 6 |a Équations différentielles fractionnaires. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Fractional differential equations.  |2 fast  |0 (OCoLC)fst01909596 
776 0 8 |i Print version:  |a Zhou, Yong, 1964-  |t Basic theory of fractional differential equations  |z 9789814579896  |w (DLC) 2014009125  |w (OCoLC)866620561 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=810391  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26877662 
938 |a ebrary  |b EBRY  |n ebr10895364 
938 |a EBSCOhost  |b EBSC  |n 810391 
938 |a YBP Library Services  |b YANK  |n 11964686 
994 |a 92  |b IZTAP