Cargando…

Theta Functions and Knots /

This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Razvan Gelca and Alejandro Uribe, which converts Weil's representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gelca, Rǎzvan, 1967- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Hackensack] New Jersey : World Scientific, [2014]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn883570389
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mn|||||||||
008 140712t20142014si ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d YDXCP  |d OCLCO  |d E7B  |d OSU  |d DEBSZ  |d STF  |d N$T  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d IDEBK  |d OCLCQ  |d AGLDB  |d OCLCQ  |d OCLCE  |d VTS  |d OTZ  |d LEAUB  |d UKAHL  |d OCLCQ  |d EYM  |d OCLCO  |d OCLCQ 
019 |a 883374287  |a 884330487  |a 1027792890  |a 1055241177  |a 1083537576  |a 1086502110  |a 1100913797  |a 1119038738  |a 1158246625  |a 1159688480  |a 1178726981  |a 1187184208  |a 1237227827  |a 1249257979  |a 1257341938  |a 1298476208  |a 1298518336 
020 |a 9789814520584  |q (electronic bk.) 
020 |a 9814520586  |q (electronic bk.) 
020 |a 1306942004  |q (ebk) 
020 |a 9781306942003  |q (ebk) 
020 |z 9789814520577  |q (hard cover ;  |q alk. paper) 
020 |z 9814520578  |q (hard cover ;  |q alk. paper) 
029 1 |a CHBIS  |b 010217532 
029 1 |a CHVBK  |b 325246564 
029 1 |a DEBBG  |b BV043029459 
029 1 |a DEBSZ  |b 41206569X 
029 1 |a DEBSZ  |b 446479543 
029 1 |a DEBSZ  |b 45500028X 
029 1 |a AU@  |b 000074584574 
035 |a (OCoLC)883570389  |z (OCoLC)883374287  |z (OCoLC)884330487  |z (OCoLC)1027792890  |z (OCoLC)1055241177  |z (OCoLC)1083537576  |z (OCoLC)1086502110  |z (OCoLC)1100913797  |z (OCoLC)1119038738  |z (OCoLC)1158246625  |z (OCoLC)1159688480  |z (OCoLC)1178726981  |z (OCoLC)1187184208  |z (OCoLC)1237227827  |z (OCoLC)1249257979  |z (OCoLC)1257341938  |z (OCoLC)1298476208  |z (OCoLC)1298518336 
037 |a 625451  |b MIL 
042 |a dlr 
050 4 |a QA345 .G35 2014 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 514.2242  |a 515/.984 
049 |a UAMI 
100 1 |a Gelca, Rǎzvan,  |d 1967-  |e author. 
245 1 0 |a Theta Functions and Knots /  |c by Razvan Gelca (Texas Tech University, USA). 
264 1 |a [Hackensack] New Jersey :  |b World Scientific,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource (xiv, 454 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Razvan Gelca and Alejandro Uribe, which converts Weil's representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretation to a certain induced representation. It also explains how the discrete Fourier transform can be related to 3- and 4-dimensional topology. Theta Functions and Knots can be read in two perspectives. People with an interest in theta functions or knot theory can learn how the two are related. Those intere. 
504 |a Includes bibliographical references and index. 
505 0 |a Preface; Contents; 1. Prologue; 1.1 The history of theta functions; 1.1.1 Elliptic integrals and theta functions; 1.1.2 The work of Riemann; 1.2 The linking number; 1.2.1 The definition of the linking number; 1.2.2 The Jones polynomial; 1.2.3 Computing the linking number from skein relations; 1.3 Witten's Chern-Simons theory; 2. A quantum mechanical prototype; 2.1 The quantization of a system of finitely many free one-dimensional particles; 2.1.1 The classical mechanics of finitely many free particles in a one-dimensional space; 2.1.2 The Schrodinger representation; 2.1.3 Weyl quantization. 
505 8 |a 2.2 The quantization of finitely many free one-dimensional particles via holomorphic functions2.2.1 The Segal-Bargmann quantization model; 2.2.2 The Schrodinger representation and the Weyl quantization in the holomorphic setting; 2.2.3 Holomorphic quantization in the momentum representation; 2.3 Geometric quantization; 2.3.1 Polarizations; 2.3.2 The construction of the Hilbert space using geometric quantization; 2.3.3 The Schrodinger representation from geometric considerations; 2.3.4 Passing from real to Kahler polarizations; 2.4 The Schrodinger representation as an induced representation. 
505 8 |a 2.5 The Fourier transform and the representation of the symplectic group Sp(2n, R)2.5.1 The Fourier transform defined by a pair of Lagrangian subspaces; 2.5.2 The Maslov index; 2.5.3 The resolution of the projective ambiguity of the representation of Sp(2n, R); 3. Surfaces and curves; 3.1 The topology of surfaces; 3.1.1 The classification of surfaces; 3.1.2 The fundamental group; 3.1.3 The homology and cohomology groups; 3.1.4 The homology groups of a surface and the intersection form; 3.2 Curves on surfaces; 3.2.1 Isotopy versus homotopy; 3.2.2 Multicurves on a torus. 
505 8 |a 3.2.3 The first homology group of a surface as a group of curves3.2.4 Links in the cylinder over a surface; 3.3 The mapping class group of a surface; 3.3.1 The definition of the mapping class group; 3.3.2 Particular cases of mapping class groups; 3.3.3 Elements of Morse and Cerf theory; 3.3.4 The mapping class group of a closed surface is generated by Dehn twists; 4. The theta functions associated to a Riemann surface; 4.1 The Jacobian variety; 4.1.1 De Rham cohomology; 4.1.2 Hodge theory on a Riemann surface; 4.1.3 The construction of the Jacobian variety. 
505 8 |a 4.2 The quantization of the Jacobian variety of a Riemann surface in a real polarization4.2.1 Classical mechanics on the Jacobian variety; 4.2.2 The Hilbert space of the quantization of the Jacobian variety in a real polarization; 4.2.3 The Schrodinger representation of the finite Heisenberg group; 4.3 Theta functions via quantum mechanics; 4.3.1 Theta functions from the geometric quantization of the Jacobian variety in a Kahler polarization; 4.3.2 The action of the finite Heisenberg group on theta functions; 4.3.3 The Segal-Bargmann transform on the Jacobian variety. 
500 |a 4.3.4 The algebra of linear operators on the space of theta functions and the quantum torus. 
588 0 |a Print version record. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Functions, Theta. 
650 0 |a Knot theory. 
650 6 |a Fonctions thêta. 
650 6 |a Théorie des nœuds. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Functions, Theta.  |2 fast  |0 (OCoLC)fst00936135 
650 7 |a Knot theory.  |2 fast  |0 (OCoLC)fst00988171 
776 0 8 |i Print version:  |a Gelca, Rǎzvan, 1967-  |t Theta functions and knots.  |d [Hackensack] New Jersey : World Scientific, 2014  |z 9789814520577  |w (DLC) 2014005501  |w (OCoLC)849787561 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=810364  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26877719 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1730171 
938 |a ebrary  |b EBRY  |n ebr10895366 
938 |a EBSCOhost  |b EBSC  |n 810364 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis28616125 
938 |a YBP Library Services  |b YANK  |n 11964676 
994 |a 92  |b IZTAP