|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn881510167 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
140620s2014 enk o 000 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d EBLCP
|d MHW
|d DEBSZ
|d S4S
|d OCLCQ
|d OCLCO
|d COO
|d OCLCF
|d TEFOD
|d OCLCO
|d N$T
|d OCLCO
|d OCLCQ
|d OCLCO
|d FEM
|d AGLDB
|d ICA
|d ZCU
|d XFH
|d MERUC
|d OCLCQ
|d D6H
|d OCLCQ
|d VNS
|d VTS
|d ICG
|d AU@
|d OCLCQ
|d STF
|d DKC
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 968038886
|a 969083180
|a 994611031
|
020 |
|
|
|a 1306875692
|q (electronic bk.)
|
020 |
|
|
|a 9781306875691
|q (electronic bk.)
|
020 |
|
|
|a 9781783983919
|q (electronic bk.)
|
020 |
|
|
|a 1783983914
|q (electronic bk.)
|
020 |
|
|
|z 9781783983902
|
020 |
|
|
|z 1783983906
|
029 |
1 |
|
|a AU@
|b 000067098793
|
029 |
1 |
|
|a CHNEW
|b 000887856
|
029 |
1 |
|
|a CHVBK
|b 374467730
|
029 |
1 |
|
|a DEBBG
|b BV043610136
|
029 |
1 |
|
|a DEBSZ
|b 409826855
|
029 |
1 |
|
|a DEBSZ
|b 484724266
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:999939996805765
|
035 |
|
|
|a (OCoLC)881510167
|z (OCoLC)968038886
|z (OCoLC)969083180
|z (OCoLC)994611031
|
037 |
|
|
|a 618820
|b MIL
|
037 |
|
|
|a EFBE5798-4818-4B6F-9292-B40BFE5150AB
|b OverDrive, Inc.
|n http://www.overdrive.com
|
050 |
|
4 |
|a QA76.73.P98
|
050 |
|
4 |
|a T55.4-60.8
|
072 |
|
7 |
|a COM
|x 051360
|2 bisacsh
|
082 |
0 |
4 |
|a 005.133
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Idris, Ivan.
|
245 |
1 |
0 |
|a Learning NumPy Array /
|c Ivan Idris.
|
260 |
|
|
|a Birmingham, UK :
|b Packt Publishing,
|c 2014.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python.
|
505 |
0 |
|
|a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with NumPy; Python; Installing NumPy, Matplotlib, SciPy, and IPython on Windows; Installing NumPy, Matplotlib, SciPy, and IPython on Linux; Installing NumPy, Matplotlib, and SciPy on Mac OS X; Building from source; NumPy arrays; Adding arrays; Online resources and help; Summary; Chapter 2: NumPy Basics; The NumPy array object; The advantages of using NumPy arrays; Creating a multidimensional array; Selecting array elements; NumPy numerical types.
|
505 |
8 |
|
|a Data type objectsCharacter codes; dtype constructors; dtype attributes; Creating a record data type; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting arrays; Array attributes; Converting arrays; Creating views and copies; Fancy indexing; Indexing with a list of locations; Indexing arrays with Booleans; Stride tricks for Sudoku; Broadcasting arrays; Summary; Chapter 3: Basic Data Analysis with NumPy; Introducing the dataset; Determining the daily temperature range; Looking for evidence of global warming; Comparing solar radiation versus temperature.
|
505 |
8 |
|
|a Analyzing wind directionAnalyzing wind speed; Analyzing precipitation and sunshine duration; Analyzing monthly precipitation in De Bilt; Analyzing atmospheric pressure in De Bilt; Analyzing atmospheric humidity in De Bilt; Summary; Chapter 4: Simple Predictive Analytics with NumPy; Examining autocorrelation of average temperature with pandas; Describing data with pandas DataFrames; Correlating weather and stocks with pandas; Predicting temperature; Autoregressive model with lag 1; Autoregressive model with lag 2; Analysing intra-year daily average temperatures.
|
505 |
8 |
|
|a Introducing the day-of-the-year temperature modelModeling temperature with the SciPy leastsq function; Day-of-year temperature take two; Moving-average temperature model with lag 1; The Autoregressive Moving Average temperature model; The time-dependent temperature mean adjusted autoregressive model; Outliers analysis of average De Bilt temperature; Using more robust statistics; Summary; Chapter 5: Signal Processing Techniques; Introducing the Sunspot data; Sifting continued; Moving averages; Smoothing functions; Forecasting with an ARMA model; Filtering a signal; Designing the filter.
|
505 |
8 |
|
|a Demonstrating cointegrationSummary; Chapter 6: Profiling, Debugging, and Testing; Assert functions; The assert_almost_equal function; Approximately equal arrays; The assert_array_almost_equal function; Profiling a program with IPython; Debugging with IPython; Performing Unit tests; Nose tests decorators; Summary; Chapter 7: The Scientific Python Ecosystem; Numerical integration; Interpolation; Using Cython with NumPy; Clustering stocks with scikit-learn; Detecting corners; Comparing NumPy to Blaze; Summary; Index.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Numerical analysis
|x Data processing.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Analyse numérique
|x Informatique.
|
650 |
|
7 |
|a COMPUTERS
|x Programming Languages
|x Python.
|2 bisacsh
|
650 |
|
7 |
|a Numerical analysis
|x Data processing
|2 fast
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|
776 |
0 |
8 |
|i Print version:
|z 9781306875691
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=797947
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1706444
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 797947
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis28514261
|
994 |
|
|
|a 92
|b IZTAP
|