Cargando…

Learning NumPy Array /

A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Idris, Ivan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2014.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn881510167
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 140620s2014 enk o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d EBLCP  |d MHW  |d DEBSZ  |d S4S  |d OCLCQ  |d OCLCO  |d COO  |d OCLCF  |d TEFOD  |d OCLCO  |d N$T  |d OCLCO  |d OCLCQ  |d OCLCO  |d FEM  |d AGLDB  |d ICA  |d ZCU  |d XFH  |d MERUC  |d OCLCQ  |d D6H  |d OCLCQ  |d VNS  |d VTS  |d ICG  |d AU@  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 968038886  |a 969083180  |a 994611031 
020 |a 1306875692  |q (electronic bk.) 
020 |a 9781306875691  |q (electronic bk.) 
020 |a 9781783983919  |q (electronic bk.) 
020 |a 1783983914  |q (electronic bk.) 
020 |z 9781783983902 
020 |z 1783983906 
029 1 |a AU@  |b 000067098793 
029 1 |a CHNEW  |b 000887856 
029 1 |a CHVBK  |b 374467730 
029 1 |a DEBBG  |b BV043610136 
029 1 |a DEBSZ  |b 409826855 
029 1 |a DEBSZ  |b 484724266 
029 1 |a DKDLA  |b 820120-katalog:999939996805765 
035 |a (OCoLC)881510167  |z (OCoLC)968038886  |z (OCoLC)969083180  |z (OCoLC)994611031 
037 |a 618820  |b MIL 
037 |a EFBE5798-4818-4B6F-9292-B40BFE5150AB  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98 
050 4 |a T55.4-60.8 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Idris, Ivan. 
245 1 0 |a Learning NumPy Array /  |c Ivan Idris. 
260 |a Birmingham, UK :  |b Packt Publishing,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
588 0 |a Print version record. 
520 |a A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python. 
505 0 |a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with NumPy; Python; Installing NumPy, Matplotlib, SciPy, and IPython on Windows; Installing NumPy, Matplotlib, SciPy, and IPython on Linux; Installing NumPy, Matplotlib, and SciPy on Mac OS X; Building from source; NumPy arrays; Adding arrays; Online resources and help; Summary; Chapter 2: NumPy Basics; The NumPy array object; The advantages of using NumPy arrays; Creating a multidimensional array; Selecting array elements; NumPy numerical types. 
505 8 |a Data type objectsCharacter codes; dtype constructors; dtype attributes; Creating a record data type; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting arrays; Array attributes; Converting arrays; Creating views and copies; Fancy indexing; Indexing with a list of locations; Indexing arrays with Booleans; Stride tricks for Sudoku; Broadcasting arrays; Summary; Chapter 3: Basic Data Analysis with NumPy; Introducing the dataset; Determining the daily temperature range; Looking for evidence of global warming; Comparing solar radiation versus temperature. 
505 8 |a Analyzing wind directionAnalyzing wind speed; Analyzing precipitation and sunshine duration; Analyzing monthly precipitation in De Bilt; Analyzing atmospheric pressure in De Bilt; Analyzing atmospheric humidity in De Bilt; Summary; Chapter 4: Simple Predictive Analytics with NumPy; Examining autocorrelation of average temperature with pandas; Describing data with pandas DataFrames; Correlating weather and stocks with pandas; Predicting temperature; Autoregressive model with lag 1; Autoregressive model with lag 2; Analysing intra-year daily average temperatures. 
505 8 |a Introducing the day-of-the-year temperature modelModeling temperature with the SciPy leastsq function; Day-of-year temperature take two; Moving-average temperature model with lag 1; The Autoregressive Moving Average temperature model; The time-dependent temperature mean adjusted autoregressive model; Outliers analysis of average De Bilt temperature; Using more robust statistics; Summary; Chapter 5: Signal Processing Techniques; Introducing the Sunspot data; Sifting continued; Moving averages; Smoothing functions; Forecasting with an ARMA model; Filtering a signal; Designing the filter. 
505 8 |a Demonstrating cointegrationSummary; Chapter 6: Profiling, Debugging, and Testing; Assert functions; The assert_almost_equal function; Approximately equal arrays; The assert_array_almost_equal function; Profiling a program with IPython; Debugging with IPython; Performing Unit tests; Nose tests decorators; Summary; Chapter 7: The Scientific Python Ecosystem; Numerical integration; Interpolation; Using Cython with NumPy; Clustering stocks with scikit-learn; Detecting corners; Comparing NumPy to Blaze; Summary; Index. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Numerical analysis  |x Data processing. 
650 6 |a Python (Langage de programmation) 
650 6 |a Analyse numérique  |x Informatique. 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Numerical analysis  |x Data processing  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |z 9781306875691 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=797947  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1706444 
938 |a EBSCOhost  |b EBSC  |n 797947 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis28514261 
994 |a 92  |b IZTAP