Cargando…

Hilbert-Huang transform and its applications /

This book is written for scientists and engineers who use HHT (Hilbert-Huang Transform) to analyze data from nonlinear and non-stationary processes. It can be treated as a HHT user manual and a source of reference for HHT applications. The book contains the basic principle and method of HHT and vari...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Huang, Norden E. (Norden Eh), 1937- (Editor ), Shen, Samuel S. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, [2014]
Edición:2nd edition.
Colección:Interdisciplinary mathematical sciences ; 16.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Ch. 1. Introduction to the Hilbert-Huang transform and its related mathematical problems. 1.1. Introduction. 1.2. The Hilbert-Huang transform. 1.3. Recent developments. 1.4. Mathematical problems related to the HHT. 1.5. Conclusion
  • ch. 2. Ensemble empirical mode decomposition and its multi-dimensional extensions. 2.1. Introduction. 2.2. The empirical mode decomposition. 2.3. The ensemble empirical mode decomposition. 2.4. The multi-dimensional ensemble empirical mode decomposition. 2.5. Summary and discussions
  • ch. 3. Multivariate extensions of empirical mode decomposition. 3.1. Introduction. 3.2. Multivariate extensions of EMD. 3.3. Mode-alignment property of MEMD. 3.4. Filter bank property of MEMD and noise-assisted MEMD. 3.5. Applications. 3.6. Discussion and conclusions
  • ch. 4. B-spine based empirical mode decomposition. 4.1. Introduction. 4.2. A B-spline algorithm for empirical mode decomposition. 4.3. Some related mathematical results. 4.4. Performance analysis of BS-EMD. 4.5. Application examples. 4.6. Conclusion and future research topics
  • ch. 5. EMD equivalent filter banks, from interpretation to applications. 5.1. Introduction. 5.2. A stochastic perspective in the frequency domain. 5.3. A deterministic perspective in the time domain. 5.4. Selected applications. 5.5. Concluding remarks
  • ch. 6. HHT sifting and filtering. 6.1. Introduction. 6.2. Objectives of HHT sifting. 6.3. Huang's sifting algorithm. 6.4. Incremental, real-time HHT sifting. 6.5. Filtering in standard time. 6.6. Case studies. 6.7. Summary and conclusions
  • ch. 7. Statistical significance test of intrinsic mode functions. 7.1. Introduction. 7.2. Characteristics of Gaussian white noise in EMD. 7.3. Spread functions ofmean energy density. 7.4. Examples of a statistical significance test of noisy data. 7.5. Summary and discussion
  • ch. 8. The time-dependent intrinsic correlation. 8.1. Introduction. 8.2. Limitations of correlation coefficient analysis. 8.3. TDIC based on EMD. 8.4. Applications of TDIC for geophysical data. 8.5. Summary and conclusions
  • ch. 9. The application of Hilbert-Huang transforms to meteorological datasets. 9.1. Introduction. 9.2. Procedure. 9.3. Applications. 9.4. Conclusion
  • ch. 10. Empirical mode decomposition and climate variability. 10.1. Introduction. 10.2. Data. 10.3. Methodology. 10.4. Statistical tests of confidence. 10.5. Results and physical interpretations. 10.6. Conclusions
  • ch. 11. EMD correction of orbital drift artifacts in satellite data stream. 11.1. Introduction. 11.2. Processing of NDVI imagery. 11.3. Empiricalmode decomposition. 11.4. Impact of orbital drift on NDVI and EMD-SZA filtering. 11.5. Results and discussion. 11.6. Extension to 8-km data. 11.7. Integration of NOAA-16 data. 11.8. Conclusions
  • ch. 12. HHT analysis of the nonlinear and non-stationary annual cycle of daily surface air temperature data. 12.1. Introduction. 12.2. Analysis method and computational algorithms. 12.3. Data. 12.4. Time analysis. 12.5. Frequency analysis. 12.6. Conclusions and discussion
  • ch. 13. Hilbert spectra of nonlinear ocean waves. 13.1. Introduction. 13.2. The Hilbert-Huang spectral analysis. 13.3. Spectrum of wind-generated waves. 13.4. Statistical properties and group structure. 13.5. Summary
  • ch. 14. EMD and instantaneous phase detection of structural damage. 14.1. Introduction to structural health monitoring. 14.2. Instantaneous phase and EMD. 14.3. Damage detection application. 14.4. Frame structure with multiple damage. 14.5. Summary and conclusions
  • ch. 15. HHT-based bridge structural health-monitoring method. 15.1. Introduction. 15.2. A review of the present state-of-the-art methods. 15.3. The Hilbert-Huang transform. 15.4. Damage-detection criteria. 15.5. Case study of damage detection. 15.6. Conclusions
  • ch. 16. Applications of HHT in image analysis. 16.1. Introduction. 16.2. Overview. 16.3. The analysis of digital slope images. 16.4. Summary.