Cargando…

Topics on real and complex singularities : proceedings of the 4th Japanese-Australian Workshop (JARCS4), Kobe, Japan, 22-25 November 2011 /

A phenomenon which appears in nature, or human behavior, can sometimes be explained by saying that a certain potential function is maximized, or minimized. For example, the Hamiltonian mechanics, soapy films, size of an atom, business management, etc. In mathematics, a point where a given function a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Satoshi Koike (Editor ), Fukui, Toshizumi (Editor ), Paunescu, Laurentiu (Editor ), Harris, Adam (Editor ), Isaev, Alexander (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, [2014]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn880147903
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 140519s2014 si o 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d OCLCO  |d OCLCF  |d OTZ  |d EBLCP  |d E7B  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCO  |d OCLCQ  |d OCL  |d OCLCO  |d AGLDB  |d VGM  |d OCLCQ  |d VTS  |d INT  |d OCLCQ  |d STF  |d AU@  |d OCL  |d OCLCQ  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 880531185 
020 |a 9789814596046  |q (electronic bk.) 
020 |a 9814596043  |q (electronic bk.) 
020 |z 9789814596039 
020 |z 9814596035 
029 1 |a DEBBG  |b BV043028136 
029 1 |a DEBSZ  |b 424073528 
029 1 |a DEBSZ  |b 446445851 
029 1 |a DEBSZ  |b 455000131 
029 1 |a AU@  |b 000074673924 
035 |a (OCoLC)880147903  |z (OCoLC)880531185 
050 4 |a QA614.58 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
049 |a UAMI 
245 0 0 |a Topics on real and complex singularities :  |b proceedings of the 4th Japanese-Australian Workshop (JARCS4), Kobe, Japan, 22-25 November 2011 /  |c editors: Satoshi Koike, Toshizumi Fukui, Laurentiu Paunescu, Adam Harris, Alexander Isaev. 
264 1 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource (x, 201 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a On the CR Hamiltonian flows and CR Yamabe problem / T. Akahori -- An example of the reduction of a single ordinary differential equation to a system, and the restricted Fuchsian relation / K. Ando -- Fronts of weighted cones / T. Fukui and M. Hasegawa -- Involutive deformations of the regular part of a normal surface / A. Harris and K. Miyajima -- Connected components of regular fibers of differentiable maps / J.T. Hiratuka and O. Saeki -- The reconstruction and recognition problems for homogeneous hypersurface singularities / A.V. Isaev -- Openings of differentiable map-germs and unfoldings / G. Ishikawa -- Non concentration of curvature near singular points of two variable analytic functions / S. Koike, T.-C. Kuo and L. Paunescu -- Saito free divisors in four dimensional affine space and reflection groups of rank four / J. Sekiguchi -- Holonomic systems of differential equations of rank two with singularities along Saito free divisors of simple type / J. Sekiguchi -- Parametric local cohomology classes and Tjurina stratifications for [symbol]-constant deformations of quasi-homogeneous singularities / S. Tajima. 
504 |a ReferencesFronts of weighted cones; 1. Fronts of cones; 2. Weighted cones; 2.1. Unit normals and fundamental forms; 2.2. Curvatures of weighted cones; 2.3. Ridge points, subparabolic points and fronts of weighted cones; 2.4. Principal directions of weighted cones; 3. Focal curves: Case (w1, w2,w3) = (1, 2, 2); 4. Examples; References; Involutive deformations of the regular part of a normal surface; 1. Introduction; 2. Involutive deformations of surfaces; 3. Some remarks on Stein completion; References; Connected components of regular fibers of differentiable maps; 1. Introduction. 
520 |a A phenomenon which appears in nature, or human behavior, can sometimes be explained by saying that a certain potential function is maximized, or minimized. For example, the Hamiltonian mechanics, soapy films, size of an atom, business management, etc. In mathematics, a point where a given function attains an extreme value is called a critical point, or a singular point. The purpose of singularity theory is to explore the properties of singular points of functions and mappings. This is a volume on the proceedings of the fourth Japanese-Australian Workshop on Real and Complex Singularities held. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Singularities (Mathematics)  |v Congresses. 
650 6 |a Singularités (Mathématiques)  |v Congrès. 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Singularities (Mathematics)  |2 fast  |0 (OCoLC)fst01119502 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
700 1 |a Satoshi Koike,  |e editor. 
700 1 |a Fukui, Toshizumi,  |e editor. 
700 1 |a Paunescu, Laurentiu,  |e editor. 
700 1 |a Harris, Adam,  |e editor. 
700 1 |a Isaev, Alexander,  |e editor. 
776 0 8 |i Print version:  |t Topics on real and complex singularities  |z 9789814596039  |w (OCoLC)871789791 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=779676  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1692742 
938 |a ebrary  |b EBRY  |n ebr10871780 
938 |a EBSCOhost  |b EBSC  |n 779676 
938 |a YBP Library Services  |b YANK  |n 11808178 
994 |a 92  |b IZTAP