Cargando…

Topics on real and complex singularities : proceedings of the 4th Japanese-Australian Workshop (JARCS4), Kobe, Japan, 22-25 November 2011 /

A phenomenon which appears in nature, or human behavior, can sometimes be explained by saying that a certain potential function is maximized, or minimized. For example, the Hamiltonian mechanics, soapy films, size of an atom, business management, etc. In mathematics, a point where a given function a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Satoshi Koike (Editor ), Fukui, Toshizumi (Editor ), Paunescu, Laurentiu (Editor ), Harris, Adam (Editor ), Isaev, Alexander (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, [2014]
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:A phenomenon which appears in nature, or human behavior, can sometimes be explained by saying that a certain potential function is maximized, or minimized. For example, the Hamiltonian mechanics, soapy films, size of an atom, business management, etc. In mathematics, a point where a given function attains an extreme value is called a critical point, or a singular point. The purpose of singularity theory is to explore the properties of singular points of functions and mappings. This is a volume on the proceedings of the fourth Japanese-Australian Workshop on Real and Complex Singularities held.
Descripción Física:1 online resource (x, 201 pages)
Bibliografía:ReferencesFronts of weighted cones; 1. Fronts of cones; 2. Weighted cones; 2.1. Unit normals and fundamental forms; 2.2. Curvatures of weighted cones; 2.3. Ridge points, subparabolic points and fronts of weighted cones; 2.4. Principal directions of weighted cones; 3. Focal curves: Case (w1, w2,w3) = (1, 2, 2); 4. Examples; References; Involutive deformations of the regular part of a normal surface; 1. Introduction; 2. Involutive deformations of surfaces; 3. Some remarks on Stein completion; References; Connected components of regular fibers of differentiable maps; 1. Introduction.
ISBN:9789814596046
9814596043