Cargando…

High power P-P lasers /

The goal of the book is to present the high-power high-frequency pulse periodic laser systems, which in the nearest time will find a lot of applications in the field of ecology, machinery, space engineering, nuclear technologies and many others. A laser-plasma generator of multiply charged ions prod...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Apollonov, Victor V. (Autor), Silnov, Sergey M. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Publishers, [2014]
Colección:Lasers and electro-optics research and technology series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • HIGH POWER P-P LASERS; HIGH POWER P-P LASERS; Library of Congress Cataloging-in-Publication Data; CONTENTS; INTRODUCTION; PART 1. HIGH-POWER PULSE-PERIODIC LASERS FOR GENERATION OF PLASMA TORCHES; Chapter 1: 1.1. PRINCIPLES OF CONSTRUCTION OF COHERENT HIGH-POWER LASER SOURCES; 1.1.1. INTERFERENCE OF RADIATIONS FROM MANY PHASE-LOCKED SOURCES; 1.1.2. OPTICAL COUPLING; 1.1.3. TALBOT EFFECT; 1.1.4. COLLECTIVE MODES; 1.1.5. CONCLUSION; Chapter 2: 1.2. HIGH-FREQUENCY PULSE-PERIODIC LASERS; 1.2.1. SOLID-STATE LASERS; 1.2.2. CARBON DIOXIDE LASERS; 1.2.3. HIGH-FREQUENCY PULSE-PERIODIC REGIME.
  • 1.2.4. CONCLUSION1.2.5. DRAWINGS, PHOTOS AND DIAGRAMS; 1.2.6. REFERENCES; Chapter 3: 1.3. HIGH-FREQUENCY PULSE-PERIODIC DISK LASERS: ADVANTAGES AND PROSPECTS; 1.3.1. INTRODUCTION; 1.3.2. DISK AND FIBER LASERS; 1.3.3. DESIGN AND PHYSICAL FOUNDATIONS OF DISK LASER OPERATION; 1.3.4. LAWS OF SCALING OF DISK LASERS; 1.3.5. REGENERATIVE AMPLIFICATION OF PULSES; 1.3.6. PROSPECTS FOR SCALING THE POWER OF DISK LASERS; 1.3.7. CONCLUSION; Chapter 4: 1.4. HIGH-POWER SEMICONDUCTOR LASER DIODE STRUCTURES AND THEIR NEW APPLICATION; 1.4.1. INTRODUCTION.
  • 1.4.2. MAJOR TRENDS ON THE DEVELOPMENT OF PULSE-PERIODIC LASERS1.4.4. CONCLUSION; 1.4.5. FIGURES, PHOTOS AND SCHEMES; Chapter 5: 1.5. ELECTRICAL DISCHARGE PULSE-PERIODIC LASERS; 1.5.1. SELF-SUSTAINED VOLUME DISCHARGE FORMATION IN CO2 LASERS; 1.5.2. HIGH POWER WIDE APERTURE HF /DF LASERS; 1.5.3. CONCLUSION; 1.5.4. FIGURES; 1.5.5. REFERENCES; Chapter 6: 1.6. POWER OPTICS AND ITS NEW MANIFESTATIONS; 1.6.1. INTRODUCTION; 1.6.2. OPTICS OF HIGH-POWER LASERS; 1.6.3. POROUS STRUCTURES IN POWER OPTICS; 1.6.4. PURSUIT OF POWER OF SEMICONDUCTOR LASER STRUCTURES; 1.6.5. OPTICS BASED ON SILICON CARBIDE.
  • 1.6.6. CONCLUSION1.6.7. FIGURES; 1.6.8. REFERENCES; PART 2. MODELS OF PHYSICAL PROCESSES OF LASER PLASMA FORMATION; Chapter 7: 2.1. IONIZATION; 2.1.1. INFLUENCE OF THE RADIATION FLUX DENSITY ON THE ION FORMATION PROCESSES; 2.1.2. CHARGE DISTRIBUTION OF PARTICLES IN THE PLASMA TORCH; 2.1.3. INFLUENCE OF THE WAVELENGTH OF HEATING RADIATION ON THE IONIZATION PROCESS; 2.1.4. DEPENDENCE OF THE IONIZATION PROCESSES ON THE PLASMOID INITIAL SIZE; 2.1.5. IONIZATION PROCESSES AS FUNCTIONS OF THE AVERAGE VELOCITY OF THE PLASMA TORCH EXPANSION; 2.1.6. MECHANISMS OF ATOM IONIZATION IN THE PLASMA.
  • 2.1.7. SUMMARY ON THE IONIZATION PROCESSES IN THE LASER PLASMAChapter 8: 2.2. RECOMBINATION; 2.2.1. RECOMBINATION IN THE ENERGY DISTRIBUTIONS OF PARTICLES; 2.2.2. FORMATION OF THE CHARGE COMPOSITION; 2.2.3. CONTROL OF THE RECOMBINATION PROCESS; 2.2.4. ION CHARGE EXCHANGE; 2.2.5. MECHANISMS OF THE FORMATION OF NEGATIVELY CHARGED IONS IN THE LASER PLASMA; Chapter 9: 2.3. PROCESSES OF THE ACCELERATION OF THE PARTICLES IN THE LASER PLASMA; 2.3.1. HIGH-ENERGY MULTIPLY CHARGED POSITIVE IONS; 2.3.2. INFLUENCE OF THE ELECTRONS OF THE LASER TORCH ON THE ACCELERATION PROCESSES.