Adhesive particle flow : a discrete-element approach /
"A particulate flow is one in which a moving fluid interacts with a large number of discrete solid particles. The category is extraordinarily broad, encompassing everything from suspended dust carried by atmospheric winds to avalanches of debris or snow rolling down a hillside. Widely varying i...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Cambridge University Press,
2014.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Half title; Title; Copyright; Dedication; Contents; Preface; Acknowledgments; 1 Introduction; 1.1. Adhesive Particle Flow; 1.2. Dimensionless Parameters and Related Simplifications; 1.2.1. Stokes Number; 1.2.2. Density Ratio; 1.2.3. Length Scale Ratios; 1.2.4. Particle Reynolds Number; 1.2.5. Particle Concentration and Mass Loading; 1.2.6. Bagnold Number; 1.2.7. Adhesion Parameter; 1.3. Applications; 1.3.1. Fibrous Filtration Processes; 1.3.2. Extraterrestrial Dust Fouling; 1.3.3. Wet Granular Material; 1.3.4. Blood Flow; 1.3.5. Aerosol Reaction Engineering; References
- 2 Modeling Viewpoints and Approaches2.1. A Question of Scale; 2.2. Macroscale Particle Methods; 2.2.1. Discrete Parcel Method; 2.2.2. Population Balance Method; 2.3. Mesoscale Particle Methods; 2.3.1. Molecular Dynamics; 2.3.2. Brownian Dynamics; 2.3.3. Dissipative Particle Dynamics; 2.3.4. Discrete Element Method; 2.4. Microscale Dynamics of Elastohydrodynamic Particle Collisions; 2.4.1. Microscale Simulations of Elastohydrodynamic Interactions; 2.4.2. Experimental Results for Two-Particle Collisions; 2.4.3. Simplified Models for Restitution Coefficient in a Viscous Fluid; References
- 3 Contact Mechanics without Adhesion3.1. Basic Concepts; 3.2. Hertz Theory: Normal Elastic Force; 3.2.1. Derivation; 3.2.2. Two-Particle Collision; 3.3. Normal Dissipation Force; 3.3.1. Physical Mechanisms; 3.3.2. Models for Solid-Phase Dissipation Force; 3.4. Hysteretic Models for Normal Contact with Plastic Deformation; 3.5. Sliding and Twisting Resistance; 3.5.1. Physical Mechanisms of Sliding and Twisting Resistance; 3.5.2. Sliding Resistance Model; 3.5.3. Twisting Resistance Model; 3.6. Rolling Resistance; 3.6.1. Rolling Velocity; 3.6.2. Physical Mechanism of Rolling Resistance
- 3.6.3. Model for Rolling ResistanceReferences; 4 Contact Mechanics with Adhesion Forces; 4.1. Basic Concepts and the Surface Energy Density; 4.2. Contact Mechanics with van der Waals Force; 4.2.1. Models for Normal Contact Force; DMT Model; JKR Model; M-D Model; 4.2.2 Normal Dissipation Force and Its Validation; 4.2.3. Effect of Adhesion on Sliding and Twisting Resistance; 4.2.4. Effect of Adhesion on Rolling Resistance; 4.3. Electrical Double-Layer Force; 4.3.1. Stern and Diffuse Layers; 4.3.2. Ionic Shielding of Charged Particles; 4.3.3. DLVO Theory; 4.4. Protein Binding
- 4.5. Liquid Bridging Adhesion4.5.1. Capillary Force; 4.5.2. Effect of Roughness on Capillary Cohesion; 4.5.3. Viscous Force; 4.5.4. Rupture Distance; 4.5.5. Capillary Torque on a Rolling Particle; 4.6. Sintering Force; 4.6.1. Sintering Regime Map; 4.6.2. Approximate Sintering Models; 4.6.3. Hysteretic Sintering Contact Model; References; 5 Fluid Forces on Particles; 5.1. Drag Force and Viscous Torque; 5.1.1. Effect of Flow Nonuniformity; 5.1.2. Effect of Fluid Inertia; 5.1.3. Effect of Surface Slip; 5.2. Lift Force; 5.2.1. Saffman Lift Force; 5.2.2. Magnus Lift Force