Cargando…

A primer in biological data analysis and visualization using R /

R is the most widely used open-source statistical and programming environment for the analysis and visualization of biological data. Drawing on Gregg Hartvigsen's extensive experience teaching biostatistics and modeling biological systems, this text is an engaging, practical, and lab-oriented i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hartvigsen, Gregg (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Columbia University Press, [2014]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. Introducing Our Software Team
  • 1.1. Solving Problems with Excel and R
  • 1.2. Install R and Rstudio
  • 1.3. Getting Help with R
  • 1.4.R as a Graphing Calculator
  • 1.5. Using Script Files
  • 1.6. Extensibility
  • 1.7. Problems
  • 2. Getting Data into R
  • 2.1. Using C() for Small Datasets
  • 2.2. Reading Data from an Excel Spreadsheet
  • 2.3. Reading Data from a Website
  • 2.4. Problems
  • 3. Working with Your Data
  • 3.1. Accuracy and Precision of Our Data
  • 3.2. Collecting Data into Dataframes
  • 3.3. Stacking Data
  • 3.4. Subsetting Data
  • 3.5. Sampling Data
  • 3.6. Sorting an Array of Data
  • 3.7. Ordering Data
  • 3.8. Sorting a Dataframe
  • 3.9. Saving a Dataframe to a File
  • 3.10. Problems
  • 4. Tell Me about My Data
  • 4.1. What are Data?
  • 4.2. Where's the Middle?
  • 4.3. Dispersion about the Middle
  • 4.4. Testing for Normality
  • 4.5. Outliers
  • 4.6. Dealing with Non-Normal Data
  • 4.7. Problems
  • 5. Visualizing Your Data
  • 5.1. Overview.
  • Contents note continued: 5.2. Histograms
  • 5.3. Boxplots
  • 5.4. Barplots
  • 5.5. Scatterplots
  • 5.6. Bump Charts (Before and After Line Plots)
  • 5.7. Pie Charts
  • 5.8. Multiple Graphs (Using Par and Pairs)
  • 5.9. Problems
  • 6. The Interpretation of Hypothesis Tests
  • 6.1. What Do We Mean by "Statistics"?
  • 6.2. How to Ask and Answer Scientific Questions
  • 6.3. The Difference Between "Hypothesis" and "Theory"
  • 6.4.A Few Experimental Design Principles
  • 6.5. How to Set Up a Simple Random Sample for an Experiment
  • 6.6. Interpreting Results: What is the "P-Value"?
  • 6.7. Type I and Type II Errors
  • 6.8. Problems
  • 7. Hypothesis Tests: One- and Two-Sample Comparisons
  • 7.1. Tests with One Value and One Sample
  • 7.2. Tests with Paired Samples (Not Independent)
  • 7.3. Tests with Two Independent Samples
  • Samples are Normally Distributed
  • Samples are not Normally Distributed
  • 7.4. Problems
  • 8. Testing Differences among Multiple Samples
  • 8.1. Samples are Normally Distributed.
  • Contents note continued: 8.2. One-Way Test for Non-Parametric Data
  • 8.3. Two-Way Analysis of Variance
  • 8.4. Problems
  • 9. Hypothesis Tests: Linear Relationships
  • 9.1. Correlation
  • 9.2. Linear Regression
  • 9.3. Problems
  • 10. Hypothesis Tests: Observed and Expected Values
  • 10.1. The X2 Test
  • 10.2. The Fisher Exact Test
  • 10.3. Problems
  • 11.A Few More Advanced Procedures
  • 11.1. Writing Your Own Function
  • 11.2. Adding 95% Confidence Intervals to Barplots
  • 11.3. Adding Letters to Barplots
  • 11.4. Adding 95% Confidence Interval Lines for Linear Regression
  • 11.5. Non-Linear Regression
  • Get and Use the Derivative
  • 11.6. An Introduction to Mathematical Modeling
  • 11.7. Problems
  • 12. An Introduction to Computer Programming
  • 12.1. What is a "Computer Program"?
  • An Example: The Central Limit Theorem
  • 12.2. Introducing Algorithms
  • 12.3.Combining Programming and Computer Output
  • 12.4. Problems
  • 13. Final Thoughts
  • 13.1. Where Do I Go from Here?