Cargando…

The language of game theory : putting epistemics into the mathematics of games /

This volume contains eight papers written by Adam Brandenburger and his co-authors over a period of 25 years. These papers are part of a program to reconstruct game theory in order to make how players reason about a game a central feature of the theory. The program - now called epistemic game theory...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Brandenburger, Adam
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific Publishing Company, ©2014.
Colección:World Scientific series in economic theory ; v. 5.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn876512443
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 140412s2014 si a ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d E7B  |d DEBSZ  |d OCLCQ  |d STF  |d N$T  |d YDXCP  |d OCLCF  |d NAM  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AGLDB  |d LIP  |d OCLCQ  |d NJR  |d OCLCQ  |d VTS  |d OTZ  |d M8D  |d UKAHL  |d YDX  |d OCLCO  |d OCLCQ  |d LEAUB  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 874213870  |a 1055247193  |a 1059045771  |a 1086431622  |a 1237230861 
020 |a 9789814513449 
020 |a 981451344X 
020 |z 9814513431 
020 |z 9789814513432 
029 1 |a AU@  |b 000052922719 
029 1 |a DEBBG  |b BV043777755 
029 1 |a DEBSZ  |b 405244037 
029 1 |a DEBSZ  |b 450736253 
029 1 |a DEBSZ  |b 45499964X 
029 1 |a GBVCP  |b 813966760 
035 |a (OCoLC)876512443  |z (OCoLC)874213870  |z (OCoLC)1055247193  |z (OCoLC)1059045771  |z (OCoLC)1086431622  |z (OCoLC)1237230861 
050 4 |a QA269 .B384 2014 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.3 
084 |a CC 3200  |2 rvk 
084 |a QH 430  |2 rvk 
049 |a UAMI 
100 1 |a Brandenburger, Adam. 
245 1 4 |a The language of game theory :  |b putting epistemics into the mathematics of games /  |c Adam Brandenburger. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific Publishing Company,  |c ©2014. 
300 |a 1 online resource (xxxiv, 263 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World Scientific Series in Economic Theory 
588 0 |a Print version record. 
505 0 |a Foreword; Contents; About the Author; Acknowledgments; Introduction; Epistemic Game Theory; Theory or Language?; Limits in Principle; Fundamental Theorem of Epistemic Game Theory; Epistemic vs. Ontic Views; Invariance and Admissibility; Questions and Directions; References; Chapter 1. An Impossibility Theorem on Beliefs in Games; 1 Introduction; 2 The Existence Problem for Complete Belief Models; 3 Belief Models; 4 Complete Belief Models; 5 Impossibility Results; 6 Assumption in Modal Logic; 7 Impossibility Results in Modal Form; 8 Strategic Belief Models. 
505 8 |a 9 Weakly Complete and Semi-Complete Models10 Positively and Topologically Complete Models; 11 Other Models in Game Theory; References; Chapter 2. Hierarchies of Beliefs and Common Knowledge; 1 Introduction; 2 Construction of Types; 3 Relationship to the Standard Model of Differential Information; References; Chapter 3. Rationalizability and Correlated Equilibria; 1 Introduction; 2 Correlated Rationalizability and A Posteriori Equilibria; 3 Independent Rationalizability and Conditionally Independent A Posteriori Equilibria; 4 Objective Solution Concepts; References. 
505 8 |a Chapter 4. Intrinsic Correlation in Games1 Introduction; 2 Intrinsic vs. Extrinsic Correlation; 3 Comparison; 4 Organization of the Chapter; 5 Type Structures; 6 The Main Result; 7 Comparison Contd.; 8 Formal Presentation; 9 CI and SUFF Formalized; 10 RCBR Formalized; 11 Main Result Formalized; 12 Conclusion; Appendices; Appendix A. CI and SUFF Contd.; Appendix B. Proofs for Section 8; Appendix C. Proofs for Section 9; Appendix D. Proofs for Section 10; Appendix E. Proofs for Section 11; Appendix F.A Finite-Levels Result; Appendix G. Independent Rationalizability. 
505 8 |a Appendix H. Injectivity and GenericityAppendix I. Extrinsic correlation Contd.; References; Chapter 5. Epistemic Conditions for Nash Equilibrium; 1 Introduction; 2 Interactive Belief Systems; 3 An Illustration; 4 Formal Statements and Proofs of the Results; 5 Tightness of the Results; 6 General (Infinite) Belief Systems; 7 Discussion; References; Chapter 6. Lexicographic Probabilities and Choice Under Uncertainty; 1 Introduction; 2 Subjective Expected Utility on Finite State Spaces; 3 Lexicographic Probability Systems and Non-Archimedean SEU Theory. 
505 8 |a 4 Admissibility and Conditional Probabilities5 Lexicographic Conditional Probability Systems; 6 A "Numerical" Representation for Non-Archimedean SEU; 7 Stochastic Independence and Product Measures; Appendix; References; Chapter 7. Admissibility in Games; 1 Introduction; 2 Heuristic Treatment; 2.1. Lexicographic probabilities; 2.2. Rationality and common assumption of rationality; 2.3. Convex combinations; 2.4. Irrationality; 2.5. Characterization of RCAR; 2.6. Iterated admissibility; 2.7. A negative result; 2.8. The ingredients; 3 SAS's and the IA Set; 4 Lexicographic Probability Systems. 
500 |a 5 Assumption. 
520 |a This volume contains eight papers written by Adam Brandenburger and his co-authors over a period of 25 years. These papers are part of a program to reconstruct game theory in order to make how players reason about a game a central feature of the theory. The program - now called epistemic game theory - extends the classical definition of a game model to include not only the game matrix or game tree, but also a description of how the players reason about one another (including their reasoning about other players' reasoning). With this richer mathematical framework, it becomes possible to determi. 
504 |a Includes bibliographical references and indexes. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Game theory. 
650 6 |a Théorie des jeux. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Game theory  |2 fast 
650 7 |a Spieltheorie  |2 gnd 
776 0 8 |i Print version:  |a Brandenburger, Adam.  |t Language of Game Theory : Putting Epistemics into the Mathematics of Games.  |d Singapore : World Scientific Publishing Company, ©2014  |z 9789814513432 
830 0 |a World Scientific series in economic theory ;  |v v. 5. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=752582  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26330918 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1664111 
938 |a ebrary  |b EBRY  |n ebr10855438 
938 |a EBSCOhost  |b EBSC  |n 752582 
938 |a YBP Library Services  |b YANK  |n 11734352 
994 |a 92  |b IZTAP