Cargando…

Understanding smart sensors /

Now in its third edition, Understanding Smart Sensors is the most complete, up-to-date, and authoritative summary of the latest applications and developments impacting smart sensors in a single volume. This thoroughly expanded and revised edition of an Artech bestseller contains a wealth of new mate...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Frank, Randy
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Artech House, [2013]
Edición:Third edition.
Colección:Artech House integrated microsystems series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: ch. 1 Smart Sensor Basics
  • 1.1. Introduction
  • 1.2. Mechanical-Electronic Transitions in Sensing
  • 1.3. Nature of Sensors
  • 1.4. Integration of Micromachining and Microelectronics
  • 1.5. Application Example
  • 1.6. Summary
  • References
  • Selected Bibliography
  • ch. 2 Micromachining
  • 2.1. Introduction
  • 2.2. Bulk Micromachining
  • 2.3. Wafer Bonding
  • 2.3.1. Silicon-on-Silicon Bonding
  • 2.3.2. Silicon-on-Glass (Anodic) Bonding
  • 2.3.3. Silicon Fusion Bonding
  • 2.3.4. Wafer Bonding for More Complex Structures and Adding ICs
  • 2.4. Surface Micromachining
  • 2.4.1. Squeeze-Film Damping
  • 2.4.2. Stiction
  • 2.4.3. Particulate Control
  • 2.4.4.Combinations of Surface and Bulk Micromachining
  • 2.5. Other Micromachining Techniques
  • 2.5.1. The LIGA Process
  • 2.5.2. Dry Etching Processes
  • 2.5.3. Micromilling
  • 2.5.4. Lasers in Micromachining
  • 2.6.Combining MEMS with IC Fabrication
  • 2.7. Other Micromachined Materials
  • 2.7.1. Diamond as an Alternate Sensor Material
  • 2.7.2. Metal Oxides and Piezoelectric Sensing
  • 2.7.3. Films on Microstructures
  • 2.7.4. Micromachining Metal Structures
  • 2.7.5. Carbon Nanotube MEMS
  • 2.8. MEMS Foundry Services and Software Tools
  • 2.9. Application Example
  • 2.10. Summary
  • References
  • Selected Bibliography
  • ch. 3 The Nature of Semiconductor Sensor Output
  • 3.1. Introduction
  • 3.2. Sensor Output Characteristics
  • 3.2.1. Wheatstone Bridge
  • 3.2.2. Piezoresistivity in Silicon
  • 3.2.3. Semiconductor Sensor Definitions
  • 3.2.4. Static Versus Dynamic Operation
  • 3.3. Other Sensing Technologies
  • 3.3.1. Capacitive Sensing
  • 3.3.2. Piezoelectric Sensing
  • 3.3.3. The Hall-Effect
  • 3.3.4. Chemical Sensors
  • 3.3.5. Improving Sensor Characteristics
  • 3.4. Digital Output Sensors
  • 3.4.1. Incremental Optical Encoders
  • 3.4.2. Digital Techniques
  • 3.5. Noise/Interference Aspects
  • 3.6. Low Power, Low Voltage Sensors
  • 3.6.1. Impedance
  • 3.7. Analysis of Sensitivity Improvement
  • 3.7.1. Thin Diaphragm
  • 3.7.2. Increase Diaphragm Area
  • 3.7.3. Improve Topology
  • 3.8. Application Example
  • 3.9. Summary
  • References
  • ch. 4 Getting Sensor Information Into the Microcontroller
  • 4.1. Introduction
  • 4.2. Amplification and Signal Conditioning
  • 4.2.1. Instrumentation Amplifiers
  • 4.2.2. Sleep-Mode Circuitry for Reducing Power
  • 4.2.3. Rail to Rail Operational Amplifiers
  • 4.2.4. Switched-Capacitor Amplifier
  • 4.2.5. Barometer Application Circuit
  • 4.2.6.4- to 20-mA Signal Transmitter
  • 4.2.7. Schmitt Trigger
  • 4.3. Separate Versus Integrated Signal Conditioning
  • 4.3.1. Integrated Signal Conditioning
  • 4.3.2. External Signal Conditioning
  • 4.4. Digital Conversion
  • 4.4.1.A/D Converters
  • 4.4.2. Performance of A/D Converters
  • 4.4.3. Implications of A/D Accuracy and Errors
  • 4.5. On-Line Tool for Evaluating a Sensor Interface Design
  • 4.6. Application Example
  • 4.7. Summary
  • References
  • Selected Bibliography
  • ch. 5 Using MCUs/DSPs to Increase Sensor IQ
  • 5.1. Introduction
  • 5.1.1. Other IC Technologies
  • 5.1.2. Logic Requirements
  • 5.2. MCU Control
  • 5.3. MCUs for Sensor Interface
  • 5.3.1. Peripherals
  • 5.3.2. Memory
  • 5.3.3. Input/Output
  • 5.3.4. On-Board A/D Conversion
  • 5.3.5. Power Saving Capability
  • 5.3.6. Local Voltage or Current Regulation
  • 5.4. DSP Control
  • 5.4.1. Digital Signal Controllers
  • 5.4.2. Field Programmable Gate Arrays
  • 5.4.3. Algorithms Versus Look-Up Tables
  • 5.5. Techniques and Systems Considerations
  • 5.5.1. Linearization
  • 5.5.2. PWM Control
  • 5.5.3. Autozero and Autorange
  • 5.5.4. Diagnostics
  • 5.5.5. Reducing EMC/RFI
  • 5.5.6. Indirect (Computed not Sensed) Versus Direct Sensing
  • 5.6. Software, Tools, and Support
  • 5.6.1. Design-in Support
  • 5.7. Sensor Integration
  • 5.8. Application Example
  • 5.9. Summary
  • References
  • ch. 6 Communications for Smart Sensors
  • 6.1. Introduction
  • 6.2. Background and Definitions
  • 6.2.1. Definitions
  • 6.2.2. Background
  • 6.3. Sources (Organizations) and Standards
  • 6.4. Automotive Protocols
  • 6.4.1. CAN Protocol
  • 6.4.2. LIN Protocol
  • 6.4.3. Media Oriented Systems Transport
  • 6.4.4. FlexRay
  • 6.4.5. Other Automotive Protocol Aspects
  • 6.5. Industrial Networks
  • 6.5.1. Example Industrial Protocols
  • 6.6. Protocols in Other Applications
  • 6.7. Protocols in Silicon
  • 6.7.1. MCU with Integrated CAN
  • 6.7.2. LIN Implementation
  • 6.7.3. Ethernet Controller
  • 6.8. Transitioning Between Protocols
  • 6.9. Application Example
  • 6.10. Summary
  • References
  • Additional References
  • ch. 7 Control Techniques
  • 7.1. Introduction
  • 7.1.1. Programmable Logic Controllers
  • 7.1.2. Open-Versus Closed-Loop Systems
  • 7.1.3. PID Control
  • 7.2. State Machines
  • 7.3. Fuzzy Logic
  • 7.4. Neural Networks
  • 7.5.Combined Fuzzy Logic and Neural Networks
  • 7.6. Adaptive Control
  • 7.6.1. Observers for Sensing
  • 7.7. Other Control Areas
  • 7.7.1. RISC Versus CISC
  • 7.8. Impact of Artificial Intelligence
  • 7.9. Application Example
  • 7.10. Summary
  • References
  • ch. 8 Wireless Sensing
  • 8.1. Introduction
  • 8.1.1. The RF Spectrum
  • 8.1.2. Spread Spectrum
  • 8.2. Wireless Data and Communications
  • 8.3. Wireless Sensing Networks
  • 8.3.1. ZigBee
  • 8.3.2. ZigBee-Like Wireless
  • 8.3.3. ANT+
  • 8.3.4.6LoWPAN
  • 8.3.5. Near Field Communication (NFC)
  • 8.3.6.Z-Wave
  • 8.3.7. Dust Networks
  • 8.3.8. Other RF Wireless Solutions
  • 8.3.9. Optical Signal Transmission
  • 8.4. Industrial Wireless Sensing Networks
  • 8.5. RF Sensing
  • 8.5.1. Surface Acoustic Wave Devices
  • 8.5.2. Radar
  • 8.5.3. Light Detection and Ranging (LIDAR)
  • 8.5.4. Global Positioning System
  • 8.5.5. Remote Emissions Sensing
  • 8.5.6. Remote Keyless Entry
  • 8.5.7. Intelligent Transportation System
  • 8.5.8. RF-ID
  • 8.5.9. Other Remote Sensing
  • 8.6. Telemetry
  • 8.7. RF MEMS
  • 8.8. Application Example
  • 8.9. Summary
  • References
  • Selected Bibliography
  • ch. 9 MEMS Beyond Sensors
  • 9.1. Introduction
  • 9.2. MEMS Actuators
  • 9.2.1. Microvalves
  • 9.2.2. Micromotors
  • 9.2.3. Micropumps
  • 9.2.4. Microdynamometer
  • 9.2.5. Microsteam Engine
  • 9.2.6. Actuators in Other Semiconductor Materials
  • 9.3. Other Micromachined Structures
  • 9.3.1. Cooling Channels
  • 9.3.2. Microoptics
  • 9.3.3. Microgripper
  • 9.3.4. Microprobes
  • 9.3.5. Micromirrors
  • 9.3.6. Heating Elements
  • 9.3.7. Thermionic Emitters
  • 9.3.8. Field Emission Devices
  • 9.3.9. Unfoldable Microelements
  • 9.3.10. Micronozzles
  • 9.3.11. Interconnects for Stacked Wafers
  • 9.3.12. Nanoguitar
  • 9.4. Application Example
  • 9.5. Summary
  • References
  • ch. 10 Packaging, Testing, and Reliability Implications of Smarter Sensors
  • 10.1. Introduction
  • 10.2. Semiconductor Packaging Applied to Sensors
  • 10.2.1. Increased Pin Count
  • 10.3. Hybrid Packaging
  • 10.3.1. Ceramic Packaging and Ceramic Substrates
  • 10.3.2. Multichip Modules
  • 10.3.3. Dual-Chip Packaging
  • 10.3.4. BGA Packaging
  • 10.4.Common Packaging for Sensors
  • 10.4.1. Plastic Packaging
  • 10.4.2. Surface-Mount Packaging
  • 10.4.3. Flip-Chip
  • 10.4.4. Wafer-Level Packaging
  • 10.4.5.3-D Packaging
  • 10.5. Reliability Implications
  • 10.5.1. The Physics of Failure
  • 10.5.2. Wafer-Level Sensor Reliability
  • 10.6. Testing Smarter Sensors
  • 10.7. Application Example
  • 10.8. Summary
  • References
  • ch. 11 Mechatronics and Sensing Systems
  • 11.1. Introduction
  • 11.1.1. Integration and Mechatronics
  • 11.2. Smart-Power ICs
  • 11.3. Embedded Sensing
  • 11.3.1. Temperature Sensing
  • 11.3.2. Current Sensing in Power ICs
  • 11.3.3. Diagnostics
  • 11.3.4. MEMS Relays
  • 11.4. Other System Aspects
  • 11.4.1. Batteries
  • 11.4.2. Field Emission Displays
  • 11.4.3. System Voltage Transients, Electrostatic Discharge, and Electromagnetic Interference
  • 11.5. Application Example
  • 11.6. Summary
  • References
  • ch. 12 Standards for Smart Sensing
  • 12.1. Introduction
  • 12.2. Setting the Standards for Smart Sensors and Systems
  • 12.3. IEEE 1451.1
  • 12.3.1.Network-Capable Application Processor
  • 12.3.2.Network Communication Models
  • 12.4. IEEE 1451.2
  • 12.4.1. STIM
  • 12.4.2. Transducer Electronic Data Sheet
  • 12.4.3. TII
  • 12.4.4. Calibration/Correction Engine
  • 12.4.5. Sourcing Power to STIMs
  • 12.4.6. Representing Physical Units in the TEDS
  • 12.5. IEEE 1451.3
  • 12.6. IEEE 1451.4
  • 12.7. IEEE 1451.5
  • 12.8. IEEE P1451.6
  • 12.9. IEEE 1451.7
  • 12.10. Extending the System to the Network
  • 12.11.
  • Application Example
  • 12.12. Summary
  • References
  • Selected Bibliography
  • ch.
  • 13 More Standards Impacting Sensors
  • 13.1. Introduction
  • 13.2. Sensor Plug and Play
  • 13.3. Universal Serial Bus
  • 13.4. Development Tools Establish De Facto Standards
  • 13.5. Alternate Standards
  • 13.5.1. Airplane Networks
  • 13.5.2. Automotive Safety Network
  • 13.5.3. Another Automotive Safety Network
  • 13.5.4. Automotive Sensor Protocol
  • 13.6. Consumer/Cell Phone Apps
  • 13.7. Application Example
  • 13.8. Summary
  • References
  • ch. 14 Sensor Fusion
  • 14.1. Introduction
  • 14.2. Sensor and Other Fusion Background
  • 14.3. Automotive Applications
  • 14.3.1. Ranging and Vision
  • 14.3.2. Sensor Fusion for Virtual Sensors
  • 14.3.3. Autonomous Driving
  • 14.4. Industrial (Robotic) Applications
  • 14.5. Consumer Applications
  • 14.5.1. Fusion Software in the Sensor
  • 14.5.2. Separate Fusion Software
  • 14.5.3. Flexible Fusion Software
  • 14.5.4. Agnostic Sensor Fusion
  • 14.5.5. Simulation and Testing
  • 14.6. Application Example
  • 14.7. Summary
  • References
  • Selected Bibliography
  • ch. 15 Energy Harvesting for Wireless Sensor Nodes
  • 15.1. Introduction
  • 15.2. Applications Drive Technology Implementation and Development
  • 15.2.1. Structural Health Monitoring
  • 15.2.2. Building Automations Systems
  • 15.2.3. Industrial Applications
  • 15.2.4. Automotive
  • 15.2.5. Aircraft
  • 15.2.6. Portable Consumer
  • 15.2.7. Remote Distributed Applications
  • 15.3.Complete System Consideration
  • 15.4. EH Technologies
  • 15.4.1. Thermoelectric EH
  • 15.4.2. Piezoelectric EH
  • 15.4.3. Photovoltaic EH
  • 15.4.4. Electromagnetic EH
  • 15.4.5. RF EH
  • 15.4.6. Electromechanical EH
  • 15.4.7. Multiple Energy Sources
  • 15.4.8. Future Concepts
  • Note continued: 15.5. Energy Storage
  • 15.5.1. Batteries
  • 15.5.2. Ultracapacitors
  • 15.6. Energy Budget
  • 15.6.1. Power Management ICs
  • 15.6.2. MCUs
  • 15.6.3. Wireless Transmission
  • 15.6.4. Sensor Power Consumption
  • 15.7. Development Systems
  • 15.8. Application Example
  • 15.9. Summary
  • References
  • Selected Bibliography
  • ch. 16 The Next Phase of Sensing Systems
  • 16.1. Introduction
  • 16.2. Future Sensor Plus Semiconductor Capabilities
  • 16.2.1. Monolithic Versus Package-Level Integration
  • 16.3. Future System Requirements
  • 16.3.1. Sensing in Automobiles
  • 16.3.2. Sensing in Smart Phones
  • 16.3.3. Health Care Sensors
  • 16.4. Software, Sensing, and the System
  • 16.4.1. Sensor Apps
  • 16.4.2. Cloud Sensing
  • 16.5. Trusted Sensing
  • 16.6. Alternate Views of Smart Sensing
  • 16.7. The Smart Loop
  • 16.8. Application Example
  • 16.9. Summary
  • Acknowledgment
  • References
  • Selected Bibliography
  • Appendix A
  • List of Web Sites for Additional Smart Sensor and MEMS Information
  • Selected Bibliography
  • Smart Sensor Acronym Decoder and Glossary.