Cargando…

Social media mining with R : deploy cutting-edge sentiment analysis techniques to real-world social media data using R /

A concise, hands-on guide with many practical examples and a detailed treatise on inference and social science research that will help you in mining data in the real world. Whether you are an undergraduate who wishes to get hands-on experience working with social data from the Web, a practitioner wi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Danneman, Nathan (Autor), Heimann, Richard, 1979- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2014.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn875641188
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 140404s2014 enk ob 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |e rda  |c IDEBK  |d EBLCP  |d N$T  |d MHW  |d OCLCF  |d OCLCQ  |d YDXCP  |d OCLCQ  |d FEM  |d AGLDB  |d OCLCQ  |d ICA  |d OCLCQ  |d ZCU  |d MERUC  |d OCLCQ  |d D6H  |d OCLCQ  |d VTS  |d ICG  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d AJS  |d OCLCO  |d SGP  |d UKOBU  |d OCLCQ  |d E7B  |d COO  |d MOR  |d PIFAG  |d U3W  |d REB  |d NLE  |d INT  |d VT2  |d UKMGB  |d WYU  |d G3B  |d TKN  |d CUI  |d UKAHL  |d HS0  |d QGK  |d OCLCQ  |d OCLCO 
016 7 |a 018006460  |2 Uk 
019 |a 878145629  |a 907234570  |a 968014911  |a 969032471  |a 1259169182 
020 |a 9781783281787  |q (electronic book) 
020 |a 1783281782  |q (electronic book) 
020 |a 1306545528  |q (ebk) 
020 |a 9781306545525  |q (ebk) 
020 |a 1783281774 
020 |a 9781783281770 
020 |z 9781783281770  |q (print) 
029 1 |a AU@  |b 000059331731 
029 1 |a CHBIS  |b 010480525 
029 1 |a CHNEW  |b 000720747 
029 1 |a CHNEW  |b 000887079 
029 1 |a CHVBK  |b 336920938 
029 1 |a DEBBG  |b BV043608071 
029 1 |a DEBSZ  |b 484721003 
029 1 |a DKDLA  |b 820120-katalog:999930346405765 
029 1 |a UKMGB  |b 018006460 
029 1 |a UNITY  |b 140237380 
035 |a (OCoLC)875641188  |z (OCoLC)878145629  |z (OCoLC)907234570  |z (OCoLC)968014911  |z (OCoLC)969032471  |z (OCoLC)1259169182 
037 |a 9781783281787  |b Packt Publishing Pvt. Ltd 
050 4 |a QA76.9.D343 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3/12  |2 22 
049 |a UAMI 
100 1 |a Danneman, Nathan,  |e author. 
245 1 0 |a Social media mining with R :  |b deploy cutting-edge sentiment analysis techniques to real-world social media data using R /  |c Nathan Danneman, Richard Heimann. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2014. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Community experience distilled 
588 0 |a Print version record. 
520 |a A concise, hands-on guide with many practical examples and a detailed treatise on inference and social science research that will help you in mining data in the real world. Whether you are an undergraduate who wishes to get hands-on experience working with social data from the Web, a practitioner wishing to expand your competencies and learn unsupervised sentiment analysis, or you are simply interested in social data analysis, this book will prove to be an essential asset. No previous experience with R or statistics is required, though having knowledge of both will enrich your experience. 
505 0 |a Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Going Viral; Social media mining using sentiment analysis; The state of communication; What is Big Data?; Human sensors and honest signals; Quantitative approaches; Summary; Chapter 2: Getting Started with R; Why R?; Quick start; The basics -- assignment and arithmetic; Functions, arguments, and help; Vectors, sequences, and combining vectors; A quick example -- creating data frames and importing files; Visualization in R; Style and workflow; Additional resources; Summary 
505 8 |a Chapter 3: Mining Twitter with RWhy Twitter data?; Obtaining Twitter data; Preliminary analyses; Summary; Chapter 4: Potentials and Pitfalls of Social Media Data; Opinion mining made difficult; Sentiment and its measurement; The nature of social media data; Traditional versus nontraditional social data; Measurement and inferential challenges; Summary; Chapter 5: Social Media Mining -- Fundamentals; Key concepts of social media mining; Good data versus bad data; Understanding sentiments; Scherer's typology of emotions; Sentiment polarity -- data and classification 
505 8 |a Supervised social media mining -- lexicon-based sentiment Supervised social media mining -- Naive Bayes classifiers; Unsupervised social media mining -- Item Response Theory for text scaling; Summary; Chapter 6: Social Media Mining -- Case Studies; Introductory considerations; Case study 1 -- supervised social media mining -- lexicon-based sentiment; Case study 2 -- Naive Bayes classifier; Case study 3 -- IRT models for unsupervised sentiment scaling; Summary; Appendix: Conclusions and Next Steps; Final thoughts; An expanding field; Further reading; Bibliography; Index 
504 |a Includes bibliographical references and index. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Data mining. 
650 0 |a Social media. 
650 2 |a Data Mining 
650 2 |a Social Media 
650 6 |a Exploration de données (Informatique) 
650 6 |a Médias sociaux. 
650 7 |a social media.  |2 aat 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Data mining  |2 fast 
650 7 |a Social media  |2 fast 
700 1 |a Heimann, Richard,  |d 1979-  |e author. 
776 0 8 |i Print version:  |a Danneman, Nathan.  |t Social Media Mining with R.  |d Packt Publishing 2014  |z 1306545528 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=747085  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26351017 
938 |a EBSCOhost  |b EBSC  |n 747085 
938 |a YBP Library Services  |b YANK  |n 11726363 
994 |a 92  |b IZTAP