|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn875641188 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
140404s2014 enk ob 001 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|e rda
|c IDEBK
|d EBLCP
|d N$T
|d MHW
|d OCLCF
|d OCLCQ
|d YDXCP
|d OCLCQ
|d FEM
|d AGLDB
|d OCLCQ
|d ICA
|d OCLCQ
|d ZCU
|d MERUC
|d OCLCQ
|d D6H
|d OCLCQ
|d VTS
|d ICG
|d OCLCQ
|d STF
|d DKC
|d OCLCQ
|d AJS
|d OCLCO
|d SGP
|d UKOBU
|d OCLCQ
|d E7B
|d COO
|d MOR
|d PIFAG
|d U3W
|d REB
|d NLE
|d INT
|d VT2
|d UKMGB
|d WYU
|d G3B
|d TKN
|d CUI
|d UKAHL
|d HS0
|d QGK
|d OCLCQ
|d OCLCO
|
016 |
7 |
|
|a 018006460
|2 Uk
|
019 |
|
|
|a 878145629
|a 907234570
|a 968014911
|a 969032471
|a 1259169182
|
020 |
|
|
|a 9781783281787
|q (electronic book)
|
020 |
|
|
|a 1783281782
|q (electronic book)
|
020 |
|
|
|a 1306545528
|q (ebk)
|
020 |
|
|
|a 9781306545525
|q (ebk)
|
020 |
|
|
|a 1783281774
|
020 |
|
|
|a 9781783281770
|
020 |
|
|
|z 9781783281770
|q (print)
|
029 |
1 |
|
|a AU@
|b 000059331731
|
029 |
1 |
|
|a CHBIS
|b 010480525
|
029 |
1 |
|
|a CHNEW
|b 000720747
|
029 |
1 |
|
|a CHNEW
|b 000887079
|
029 |
1 |
|
|a CHVBK
|b 336920938
|
029 |
1 |
|
|a DEBBG
|b BV043608071
|
029 |
1 |
|
|a DEBSZ
|b 484721003
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:999930346405765
|
029 |
1 |
|
|a UKMGB
|b 018006460
|
029 |
1 |
|
|a UNITY
|b 140237380
|
035 |
|
|
|a (OCoLC)875641188
|z (OCoLC)878145629
|z (OCoLC)907234570
|z (OCoLC)968014911
|z (OCoLC)969032471
|z (OCoLC)1259169182
|
037 |
|
|
|a 9781783281787
|b Packt Publishing Pvt. Ltd
|
050 |
|
4 |
|a QA76.9.D343
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3/12
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Danneman, Nathan,
|e author.
|
245 |
1 |
0 |
|a Social media mining with R :
|b deploy cutting-edge sentiment analysis techniques to real-world social media data using R /
|c Nathan Danneman, Richard Heimann.
|
264 |
|
1 |
|a Birmingham :
|b Packt Publishing,
|c 2014.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
490 |
1 |
|
|a Community experience distilled
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a A concise, hands-on guide with many practical examples and a detailed treatise on inference and social science research that will help you in mining data in the real world. Whether you are an undergraduate who wishes to get hands-on experience working with social data from the Web, a practitioner wishing to expand your competencies and learn unsupervised sentiment analysis, or you are simply interested in social data analysis, this book will prove to be an essential asset. No previous experience with R or statistics is required, though having knowledge of both will enrich your experience.
|
505 |
0 |
|
|a Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Going Viral; Social media mining using sentiment analysis; The state of communication; What is Big Data?; Human sensors and honest signals; Quantitative approaches; Summary; Chapter 2: Getting Started with R; Why R?; Quick start; The basics -- assignment and arithmetic; Functions, arguments, and help; Vectors, sequences, and combining vectors; A quick example -- creating data frames and importing files; Visualization in R; Style and workflow; Additional resources; Summary
|
505 |
8 |
|
|a Chapter 3: Mining Twitter with RWhy Twitter data?; Obtaining Twitter data; Preliminary analyses; Summary; Chapter 4: Potentials and Pitfalls of Social Media Data; Opinion mining made difficult; Sentiment and its measurement; The nature of social media data; Traditional versus nontraditional social data; Measurement and inferential challenges; Summary; Chapter 5: Social Media Mining -- Fundamentals; Key concepts of social media mining; Good data versus bad data; Understanding sentiments; Scherer's typology of emotions; Sentiment polarity -- data and classification
|
505 |
8 |
|
|a Supervised social media mining -- lexicon-based sentiment Supervised social media mining -- Naive Bayes classifiers; Unsupervised social media mining -- Item Response Theory for text scaling; Summary; Chapter 6: Social Media Mining -- Case Studies; Introductory considerations; Case study 1 -- supervised social media mining -- lexicon-based sentiment; Case study 2 -- Naive Bayes classifier; Case study 3 -- IRT models for unsupervised sentiment scaling; Summary; Appendix: Conclusions and Next Steps; Final thoughts; An expanding field; Further reading; Bibliography; Index
|
504 |
|
|
|a Includes bibliographical references and index.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Social media.
|
650 |
|
2 |
|a Data Mining
|
650 |
|
2 |
|a Social Media
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
6 |
|a Médias sociaux.
|
650 |
|
7 |
|a social media.
|2 aat
|
650 |
|
7 |
|a COMPUTERS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Social media
|2 fast
|
700 |
1 |
|
|a Heimann, Richard,
|d 1979-
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Danneman, Nathan.
|t Social Media Mining with R.
|d Packt Publishing 2014
|z 1306545528
|
830 |
|
0 |
|a Community experience distilled.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=747085
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26351017
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 747085
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11726363
|
994 |
|
|
|a 92
|b IZTAP
|