Cargando…

Introduction to complex analysis /

Complex analysis is a classic and central area of mathematics, which is studied and exploited in a range of important fields, from number theory to engineering. Introduction to Complex Analysis was first published in 1985, and for this much awaited second edition the text has been considerably expan...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Priestley, H. A. (Hilary A.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Oxford University Press, 2003.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn874563358
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 140324s2003 enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ  |d EZ9  |d JBG  |d OCLCQ  |d OCLCO  |d TOA  |d OCLCO  |d AGLDB  |d OCLCQ  |d YDX  |d OCLCQ  |d OCLCO  |d CUY  |d ICG  |d ZCU  |d STF  |d VTS  |d REC  |d OCLCO  |d OCLCQ  |d WYU  |d TKN  |d DKC  |d OCLCQ  |d M8D  |d BWN  |d S2H  |d OCLCQ  |d LUN  |d UKAHL  |d OCLCQ  |d OCLCO  |d INARC  |d TXE  |d OCLCQ 
016 7 |a 0198525621  |2 Uk 
019 |a 875098009  |a 961882026  |a 971128841  |a 1116147291  |a 1163956664  |a 1167444975  |a 1182007817  |a 1182007925  |a 1190694907 
020 |a 9780191583339  |q (electronic bk.) 
020 |a 0191583332  |q (electronic bk.) 
020 |a 1306531624  |q (ebk.) 
020 |a 9781306531627  |q (ebk.) 
020 |z 9780198525615 
020 |z 0198525613 
020 |z 9780198525622 
020 |z 0198525621 
029 1 |a AU@  |b 000054198083 
029 1 |a DEBBG  |b BV043033395 
029 1 |a DEBSZ  |b 403674913 
029 1 |a DEBSZ  |b 421213876 
029 1 |a DEBSZ  |b 445111380 
029 1 |a GBVCP  |b 813967848 
035 |a (OCoLC)874563358  |z (OCoLC)875098009  |z (OCoLC)961882026  |z (OCoLC)971128841  |z (OCoLC)1116147291  |z (OCoLC)1163956664  |z (OCoLC)1167444975  |z (OCoLC)1182007817  |z (OCoLC)1182007925  |z (OCoLC)1190694907 
037 |a 584413  |b MIL 
050 4 |a QA331.7  |b .P75 2003eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a MAT  |2 ukslc 
072 7 |a PB  |2 bicssc 
072 7 |a PBH  |2 bicssc 
072 7 |a PBKD  |2 bicssc 
072 7 |a PH  |2 bicssc 
072 7 |a TBC  |2 bicssc 
072 7 |a TBJ  |2 bicssc 
082 0 4 |a 515.9  |2 22 
084 |a SK 700  |2 rvk 
049 |a UAMI 
100 1 |a Priestley, H. A.  |q (Hilary A.) 
245 1 0 |a Introduction to complex analysis /  |c H.A. Priestley. 
250 |a Second edition. 
264 1 |a Oxford :  |b Oxford University Press,  |c 2003. 
300 |a 1 online resource (xii, 328 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Previous edition: Oxford : Clarendon, 1990. 
504 |a Includes bibliographical references (pages 319-320) and index. 
588 0 |a Print version record. 
505 0 |a Cover; Contents; Notation and terminology; 1. The complex plane; Complex numbers; Algebra in the complex plane; Conjugation, modulus, and inequalities; Exercises; 2. Geometry in the complex plane; Lines and circles; The extended complex plane and the Riemann sphere; Möbius transformations; Exercises; 3. Topology and analysis in the complex plane; Open sets and closed sets in the complex plane; Convexity and connectedness; Limits and continuity; Exercises; 4. Paths; Introducing curves and paths; Properties of paths and contours; Exercises; 5. Holomorphic functions. 
505 8 |a Differentiation and the Cauchy-Riemann equations; Holomorphic functions; Exercises; 6. Complex series and power series; Complex series; Power series; A proof of the Differentiation theorem for power series; Exercises; 7. A cornucopia of holomorphic functions; The exponential function; Complex trigonometric and hyperbolic functions; Zeros and periodicity; Argument, logarithms, and powers; Holomorphic branches of some simple multifunctions; Exercises; 8. Conformal mapping; Conformal mapping; Some standard conformal mappings; Mappings of regions by standard mappings; Building conformal mappings. 
505 8 |a Exercises; 9. Multifunctions; Branch points and multibranches; Cuts and holomorphic branches; Exercises; 10. Integration in the complex plane; Integration along paths; The Fundamental theorem of calculus; Exercises; 11. Cauchy's theorem: basic track; Cauchy's theorem; Deformation; Logarithms again; Exercises; 12. Cauchy's theorem: advanced track; Deformation and homotopy; Holomorphic functions in simply connected regions; Argument and index; Cauchy's theorem revisited; Exercises; 13. Cauchy's formulae; Cauchy's integral formula; Higher-order derivatives; Exercises. 
505 8 |a 14. Power series representation; Integration of series in general and power series in particular; Taylor's theorem; Multiplication of power series; A primer on uniform convergence; Exercises; 15. Zeros of holomorphic functions; Characterizing zeros; The Identity theorem and the Uniqueness theorem; Counting zeros; Exercises; 16. Holomorphic functions: further theory; The Maximum modulus theorem; Holomorphic mappings; Exercises; 17. Singularities; Laurent's theorem; Singularities; Meromorphic functions; Exercises; 18. Cauchy's residue theorem; Residues and Cauchy's residue theorem. 
505 8 |a Calculation of residues; Exercises; 19. A technical toolkit for contour integration; Evaluating real integrals by contour integration; Inequalities and limits; Estimation techniques; Improper and principal-value integrals; Exercises; 20. Applications of contour integration; Integrals of rational functions; Integrals of other functions with a finite number of poles; Integrals involving functions with infinitely many poles; Integrals involving multifunctions; Evaluation of definite integrals: overview (basic track); Summation of series; Further techniques; Exercises; 21. The Laplace transform. 
520 |a Complex analysis is a classic and central area of mathematics, which is studied and exploited in a range of important fields, from number theory to engineering. Introduction to Complex Analysis was first published in 1985, and for this much awaited second edition the text has been considerably expanded, while retaining the style of the original. More detailed presentation is given of elementary topics, to reflect the knowledge base of current students. Exercise sets have been substantially revised and enlarged, with carefully graded exercises at the end of each chapter. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematical analysis. 
650 0 |a Functions of complex variables. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Functions of complex variables.  |2 fast  |0 (OCoLC)fst00936116 
650 7 |a Mathematical analysis.  |2 fast  |0 (OCoLC)fst01012068 
650 7 |a Funktionentheorie  |2 gnd 
650 0 7 |a Funktionentheorie.  |2 swd 
776 0 8 |i Print version:  |a Priestley, H.A. (Hilary A.).  |t Introduction to complex analysis.  |b Second edition  |z 0198525613  |w (OCoLC)51965018 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=736107  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 20450319 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26310962 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26311033 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7034662 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1657778 
938 |a EBSCOhost  |b EBSC  |n 736107 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis27827955 
938 |a Internet Archive  |b INAR  |n introductiontoco0000prie_j5a3 
938 |a YBP Library Services  |b YANK  |n 11721390 
994 |a 92  |b IZTAP