Cargando…

New foundations for physical geometry : the theory of linear structures /

Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original theory of linear struct...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Maudlin, Tim (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Oxford University Press, 2014.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn872566569
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 140313s2014 enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d CAUOI  |d OCLCF  |d E7B  |d MYG  |d EBLCP  |d DEBSZ  |d OCLCQ  |d FIE  |d WYU  |d OCLCA  |d AU@  |d OCLCQ  |d K6U  |d UKAHL  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 016546997  |2 Uk 
019 |a 876042939  |a 1065674272  |a 1298426178  |a 1370503527 
020 |a 9780191004551  |q (electronic bk.) 
020 |a 0191004553  |q (electronic bk.) 
020 |a 9780191771613  |q (electronic bk.) 
020 |a 0191771619  |q (electronic bk.) 
020 |z 9780198701309 
020 |z 0198701306 
029 1 |a DEBBG  |b BV043029633 
029 1 |a DEBSZ  |b 446484024 
029 1 |a NLGGC  |b 373173741 
029 1 |a NLGGC  |b 374847436 
029 1 |a NZ1  |b 15754555 
035 |a (OCoLC)872566569  |z (OCoLC)876042939  |z (OCoLC)1065674272  |z (OCoLC)1298426178  |z (OCoLC)1370503527 
050 4 |a QA608  |b .M38 2014eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514.223  |2 23 
049 |a UAMI 
100 1 |a Maudlin, Tim,  |e author. 
245 1 0 |a New foundations for physical geometry :  |b the theory of linear structures /  |c Tim Maudlin. 
264 1 |a Oxford :  |b Oxford University Press,  |c 2014. 
300 |a 1 online resource (ix, 363 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from pdf information screen (Ebsco, viewed March 12, 2014). 
504 |a Includes bibliographical references and index. 
520 8 |a Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original theory of linear structures. 
505 0 0 |g Machine generated contents note:  |t Metaphorical and Geometrical Spaces --  |t A Light Dance on the Dust of the Ages --  |t The Proliferation of Numbers --  |t Descartes and Coordinate Geometry --  |t John Wallis and the Number Line --  |t Dedekind and the Construction of Irrational Numbers --  |t Overview and Terminological Conventions --  |g 1.  |t Topology and Its Shortcomings --  |t Standard Topology --  |t Closed Sets, Neighborhoods, Boundary Points, and Connected Spaces --  |t The Hausdorff Property --  |t Why Discrete Spaces Matter --  |t The Relational Nature of Open Sets --  |t The Bill of Indictment (So Far) --  |g 2.  |t Linear Structures, Neighborhoods, Open Sets --  |t Methodological Morals --  |t The Essence of the Line --  |t The (First) Theory of Linear Structures --  |t Proto-Linear Structures --  |t Discrete Spaces, Mr Bush's Wild Line, the Woven Plane, and the Affine Plane --  |t A Taxonomy of Linear Structures --  |t Neighborhoods in a Linear Structure --  |t Open Sets. 
505 0 0 |t Finite-Point Spaces --  |t Return to Intuition --  |t Directed Linear Structures --  |t Linear Structures and Directed Linear Structures --  |t Neighborhoods, Open Sets, and Topologies Again --  |t Finite-Point Spaces and Geometrical Interpretability --  |t A Geometrically Uninterpretable Topological Space --  |t Segment-Spliced Linear Structures --  |t Looking Ahead --  |t Exercises --  |t Appendix: Neighborhoods and Linear Structures --  |g 3.  |t Closed Sets, Open Sets (Again), Connected Spaces --  |t Closed Sets: Preliminary Observations --  |t Open and Closed Intervals --  |t JP-closed and JP-open Sets --  |t Jp-open Sets and Open Sets, JP-closed Sets and Closed Sets --  |t Zeno's Combs --  |t Closed Sets, Open Sets, and Complements --  |t Interiors, Boundary Points, and Boundaries --  |t Formal Properties of Boundary Points --  |t Connected Spaces --  |t Chains and Connectedness --  |t Directedness and Connectedness --  |t Exercises --  |g 4.  |t Separation Properties, Convergence, and Extensions --  |t Separation Properties --  |t Convergence and Unpleasantness. 
505 0 0 |t Sequences and Convergence --  |t Extensions --  |t The Topologist's Sine Curve --  |t Physical Interlude: Thomson's Lamp --  |t Exercises --  |g 5.  |t Properties of Functions --  |t Continuity: an Overview --  |t The Intuitive Explication of Continuity and Its Shortcomings --  |t The Standard Definition and Its Shortcomings --  |t What the Standard Definition of Continuity Defines --  |t The Essence of Continuity --  |t Continuity at a Point and in a Direction --  |t An Historical Interlude --  |t Remarks on the Architecture of Definitions; Lineal Functions --  |t Lines and Continuity in Standard Topology --  |t Exercises --  |g 6.  |t Subspaces and Substructures; Straightness and Differentiability --  |t The Geometrical Structure of a Subspace: Desiderata --  |t Subspaces in Standard Topology --  |t Subspaces in the Theory of Linear Structures --  |t Substructures --  |t One Way Forward --  |t Euclid's Postulates and the Nature of Straightness --  |t Convex Affine Spaces --  |t Example: Some Conical Spaces --  |t Tangents --  |t Upper and Lower Tangents, Differentiability --  |t Summation --  |t Exercises. 
505 0 0 |g 7.  |t Metrical Structure --  |t Approaches to Metrical Structure --  |t Ratios Between What? --  |t The Additive Properties of Straight Lines --  |t Congruence and Comparability --  |t Eudoxan and Anthyphairetic Ratios --  |t The Compass --  |t Metric Linear Structures and Metric Functions --  |t Open Lines, Curved Lines, and Rectification --  |t Continuity of the Metric --  |t Exercises --  |t Appendix: A Remark about Minimal Regular Metric Spaces --  |g 8.  |t Product Spaces and Fiber Bundles --  |t New Spaces from Old --  |t Constructing Product Linear Structures --  |t Examples of Product Linear Structures --  |t Neighborhoods and Open Sets in Product Linear Structures --  |t Fiber Bundles --  |t Sections --  |t Additional Structure --  |t Exercises --  |g 9.  |t Beyond Continua --  |t How Can Continua and Non-Continua Approximate Each Other? --  |t Continuous Functions --  |t Homotopy --  |t Compactness --  |t Summary of Mathematical Results and Some Open Questions --  |t Exercises. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Line geometry. 
650 0 |a Space and time. 
650 6 |a Géométrie de la ligne. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Line geometry  |2 fast 
650 7 |a Space and time  |2 fast 
650 7 |a Raumstruktur  |2 gnd 
650 7 |a Topologischer Raum  |2 gnd 
650 7 |a Raum-Zeit  |2 gnd 
776 0 8 |i Print version:  |a Maudlin, Tim.  |t New foundations for physical geometry : the theory of linear structures.  |d Oxford, [England] ; New York, New York : Oxford University Press, ©2014  |h ix, 363 pages  |z 9780198701309 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=707100  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26202397 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7038403 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3056113 
938 |a ebrary  |b EBRY  |n ebr10841056 
938 |a EBSCOhost  |b EBSC  |n 707100 
938 |a YBP Library Services  |b YANK  |n 11678772 
938 |a YBP Library Services  |b YANK  |n 11413170 
994 |a 92  |b IZTAP