|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
EBSCO_ocn871258013 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
140303s2014 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d COO
|d IDEBK
|d UMI
|d E7B
|d OSU
|d YDXCP
|d DEBBG
|d CAMBR
|d OCLCF
|d EUX
|d OCLCQ
|d UAB
|d OCLCQ
|d CEF
|d INT
|d OCLCQ
|d WYU
|d OCLCQ
|d UBY
|d UKAHL
|d OCLCQ
|d VLY
|d LUN
|d OCLCQ
|d OCLCO
|d OCLCQ
|
066 |
|
|
|c (S
|
019 |
|
|
|a 870421503
|a 873843567
|a 889950060
|a 1162538478
|a 1167264688
|a 1241942780
|a 1242479963
|
020 |
|
|
|a 9781107732292
|q (electronic bk.)
|
020 |
|
|
|a 1107732298
|q (electronic bk.)
|
020 |
|
|
|a 9781107279087
|q (electronic bk.)
|
020 |
|
|
|a 1107279089
|q (electronic bk.)
|
020 |
|
|
|z 9781107627857
|q (Paperback)
|
020 |
|
|
|z 1107627850
|q (Paperback)
|
020 |
|
|
|a 1139895443
|
020 |
|
|
|a 9781139895446
|
020 |
|
|
|a 1107721245
|
020 |
|
|
|a 9781107721241
|
020 |
|
|
|a 1107730546
|
020 |
|
|
|a 9781107730540
|
020 |
|
|
|a 1107724171
|
020 |
|
|
|a 9781107724174
|
020 |
|
|
|a 1107728789
|
020 |
|
|
|a 9781107728783
|
029 |
1 |
|
|a DEBSZ
|b 41417366X
|
029 |
1 |
|
|a NLGGC
|b 373130694
|
029 |
1 |
|
|a NZ1
|b 15392530
|
029 |
1 |
|
|a DEBBG
|b BV042031905
|
035 |
|
|
|a (OCoLC)871258013
|z (OCoLC)870421503
|z (OCoLC)873843567
|z (OCoLC)889950060
|z (OCoLC)1162538478
|z (OCoLC)1167264688
|z (OCoLC)1241942780
|z (OCoLC)1242479963
|
037 |
|
|
|a CL0500000403
|b Safari Books Online
|
050 |
|
4 |
|a QA403
|b .C44 2014eb
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.23
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Ceccherini-Silberstein, Tullio,
|e author.
|
245 |
1 |
0 |
|a Representation theory and harmonic analysis of wreath products of finite groups /
|c Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli.
|
264 |
|
1 |
|a Cambridge :
|b Cambridge University Press,
|c 2014.
|
300 |
|
|
|a 1 online resource (xii, 163 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 410
|
504 |
|
|
|a Includes bibliographical references (pages 157-160) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|6 880-01
|a 1. General theory: 1.1. Induced representations; 1.1.1. Definitions; 1.1.2. Transitivity and additivity of induction; 1.1.3. Frobenius character formula; 1.1.4. Induction and restriction; 1.1.5. Induced representations and induced operators; 1.1.6. Frobenius reciprocity; 1.2. Harmonic analysis on a finite homogeneous space; 1.2.1. Frobenius reciprocity for permutation representations; 1.2.2. Spherical functions; 1.2.3. The other side of Frobenius reciprocity for permutation representations; 1.2.4. Gelfand pairs; 1.3. Clifford theory; 1.3.1. Clifford correspondence; 1.3.2. The little group method; 1.3.3. Semidirect products; 1.3.4. Semidirect products with an Abelian normal subgroup; 1.3.5. The affine group over a finite field; 1.3.6. The finite Heisenberg group -- 2. Wreath products of finite groups and their representation theory: 2.1. Basic properties of wreath products of finite groups; 2.1.1. Definitions; 2.1.2. Composition and exponentiation actions; 2.1.3. Iterated wreath products and their actions on rooted trees; 2.1.4. Spherically homogeneous rooted trees and their automorphism group; 2.1.5. The finite ultrametric space; 2.2. Two applications of wreath products to group theory2.2.1. The theorem of Kaloujnine and Krasner; 2.2.2. Primitivity of the exponentiation action; 2.3. Conjugacy classes of wreath products; 2.3.1. A general description of conjugacy classes; 2.3.2. Conjugacy classes of groups of the form C[sub(2)] wr G; 2.3.3. Conjugacy classes of groups of the form F wr S[sub(n)]; 2.4. Representation theory of wreath products; 2.4.1. The irreducible representations of wreath products; 2.4.2. The character and matrix coefficients of the representation tilde sigma.
|
505 |
8 |
|
|a 2.5. Representation theory of groups of the form C[sub(2)] wr G2.5.1 Representation theory of the finite lamplighter group C[sub(2)] wr C[sub(n)]; 2.5.2. Representation theory of the hyperoctahedral group C[sub(2)] wr S[sub(n)]; 2.6. Representation theory of groups of the form F wr S[sub(n)]; 2.6.1. Representation theory of S[sub(m)] wr S[sub(n)] -- 3. Harmonic analysis on some homogeneous spaces of finite wreath products: 3.1. Harmonic analysis on the composition of two permutation representations; 3.1.1. Decomposition into irreducible representations; 3.1.2. Spherical matrix coefficients; 8 3.2. The generalized Johnson scheme; 3.2.1. The Johnson scheme; 3.2.2. The homogeneous space Theta h; 3.2.3. Two special kinds of tensor product; 3.2.4. The decomposition of L (Theta [sub(h)]) into irreducible representations; 3.2.5. The spherical functions; 3.2.6. The homogeneous space V(r, s) and the associated Gelfand pair; 3.3. Harmonic analysis on exponentiations and on wreath products of permutation representations; 3.3.1. Exponentiation and wreath products; 3.3.2. The case G=C[sub(2)] and Z trivial; 3.3.3. The case when L(Y) is multiplicity free; 3.3.4. Exponentiation of finite Gelfand pairs; 3.4. Harmonic analysis on finite lamplighter spaces; 3.4.1. Finite lamplighter spaces; 3.4.2. Spectral analysis of an invariant graphs; 3.4.4. The lamplighter on the complete graph.
|
520 |
|
|
|a This book presents an introduction to the representation theory of wreath products of finite groups and harmonic analysis on the corresponding homogeneous spaces. The reader will find a detailed description of the theory of induced representations and Clifford theory, focusing on a general formulation of the little group method. This provides essential tools for the determination of all irreducible representations of wreath products of finite groups. The exposition also includes a detailed harmonic analysis of the finite lamplighter groups, the hyperoctahedral groups, and the wreath product of two symmetric groups. This relies on the generalised Johnson scheme, a new construction of finite Gelfand pairs. The exposition is completely self-contained and accessible to anyone with a basic knowledge of representation theory. Plenty of worked examples and several exercises are provided, making this volume an ideal textbook for graduate students. It also represents a useful reference for more experienced researchers.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Harmonic analysis.
|
650 |
|
0 |
|a Finite groups.
|
650 |
|
2 |
|a Fourier Analysis
|
650 |
|
6 |
|a Analyse harmonique.
|
650 |
|
6 |
|a Groupes finis.
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Intermediate.
|2 bisacsh
|
650 |
|
7 |
|a Finite groups.
|2 fast
|0 (OCoLC)fst00924908
|
650 |
|
7 |
|a Harmonic analysis.
|2 fast
|0 (OCoLC)fst00951490
|
700 |
1 |
|
|a Scarabotti, Fabio,
|e author.
|
700 |
1 |
|
|a Tolli, Filippo,
|d 1968-
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Ceccherini-Silberstein, Tullio.
|t Representation theory and harmonic analysis of wreath products of finite groups
|z 9781107627857
|w (DLC) 2013024946
|w (OCoLC)853113607
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 410.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=685305
|z Texto completo
|
880 |
0 |
0 |
|6 505-01/(S
|g Machine generated contents note:
|g 1.
|t General theory --
|g 1.1.
|t Induced representations --
|g 1.1.1.
|t Definitions --
|g 1.1.2.
|t Transitivity and additivity of induction --
|g 1.1.3.
|t Frobenius character formula --
|g 1.1.4.
|t Induction and restriction --
|g 1.1.5.
|t Induced representations and induced operators --
|g 1.1.6.
|t Frobenius reciprocity --
|g 1.2.
|t Harmonic analysis on a finite homogeneous space --
|g 1.2.1.
|t Frobenius reciprocity for permutation representations --
|g 1.2.2.
|t Spherical functions --
|g 1.2.3.
|t other side of Frobenius reciprocity for permutation representations --
|g 1.2.4.
|t Gelfand pairs --
|g 1.3.
|t Clifford theory --
|g 1.3.1.
|t Clifford correspondence --
|g 1.3.2.
|t little group method --
|g 1.3.3.
|t Semidirect products --
|g 1.3.4.
|t Semidirect products with an Abelian normal subgroup --
|g 1.3.5.
|t affine group over a finite field --
|g 1.3.6.
|t finite Heisenberg group --
|g 2.
|t Wreath products of finite groups and their representation theory --
|g 2.1.
|t Basic properties of wreath products of finite groups --
|g 2.1.1.
|t Definitions --
|g 2.1.2.
|t Composition and exponentiation actions --
|g 2.1.3.
|t Iterated wreath products and their actions on rooted trees --
|g 2.1.4.
|t Spherically homogeneous rooted trees and their automorphism group --
|g 2.1.5.
|t finite ultrametric space --
|g 2.2.
|t Two applications of wreath products to group theory --
|g 2.2.1.
|t theorem of Kaloujnine and Krasner --
|g 2.2.2.
|t Primitivity of the exponentiation action --
|g 2.3.
|t Conjugacy classes of wreath products --
|g 2.3.1.
|t general description of conjugacy classes --
|g 2.3.2.
|t Conjugacy classes of groups of the form C2 G --
|g 2.3.3.
|t Conjugacy classes of groups of the form F Sn --
|g 2.4.
|t Representation theory of wreath products --
|g 2.4.1.
|t irreducible representations of wreath products --
|g 2.4.2.
|t character and matrix coefficients of the representation σ --
|g 2.5.
|t Representation theory of groups of the form C2 G --
|g 2.5.1.
|t Representation theory of the finite lamplighter group C2 Cn --
|g 2.5.2.
|t Representation theory of the hyperoctahedral group C2 Sn --
|g 2.6.
|t Representation theory of groups of the form F Sn --
|g 2.6.1.
|t Representation theory of Sm Sn --
|g 3.
|t Harmonic analysis on some homogeneous spaces of finite wreath products --
|g 3.1.
|t Harmonic analysis on the composition of two permutation representations --
|g 3.1.1.
|t Decomposition into irreducible representations --
|g 3.1.2.
|t Spherical matrix coefficients --
|g 3.2.
|t generalized Johnson scheme --
|g 3.2.1.
|t Johnson scheme --
|g 3.2.2.
|t homogeneous space h --
|g 3.2.3.
|t Two special kinds of tensor product --
|g 3.2.4.
|t decomposition of L(h) into irreducible representations --
|g 3.2.5.
|t spherical functions --
|g 3.2.6.
|t homogeneous space V(r, s) and the associated Gelfand pair --
|g 3.3.
|t Harmonic analysis on exponentiations and on wreath products of permutation representations --
|g 3.3.1.
|t Exponentiation and wreath products --
|g 3.3.2.
|t case G = C2 and Z trivial --
|g 3.3.3.
|t case when L(Y) is multiplicity free --
|g 3.3.4.
|t Exponentiation of finite Gelfand pairs --
|g 3.4.
|t Harmonic analysis on finite lamplighter spaces --
|g 3.4.1.
|t Finite lamplighter spaces --
|g 3.4.2.
|t Spectral analysis of an invariant operator --
|g 3.4.3.
|t Spectral analysis of lamplighter graphs --
|g 3.4.4.
|t lamplighter on the complete graph.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH34203023
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26386199
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10843188
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 685305
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis27624077
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11577241
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11682317
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11683497
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11771453
|
994 |
|
|
|a 92
|b IZTAP
|