Cargando…

Introduction to modern digital holography : with MATLAB /

"Get up to speed with digital holography with this concise and straightforward introduction to modern techniques and conventions. Building up from the basic principles of optics, this book describes key techniques in digital holography, such as phase-shifting holography, low-coherence holograph...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Poon, Ting-Chung
Otros Autores: Liu, Jung-Ping
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [England], United Kingdom : Cambridge University Press, 2014.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Half title; Title; Copyright; Contents; Preface; 1 Wave optics; 1.1 Maxwell's equations and the wave equation; 1.2 Plane waves and spherical waves; 1.3 Scalar diffraction theory; 1.3.1 Fresnel diffraction; 1.3.2 Fraunhofer diffraction; 1.4 Ideal thin lens as an optical Fourier transformer; 1.5 Optical image processing; Problems; References; 2 Fundamentals of holography; 2.1 Photography and holography; 2.2 Hologram as a collection of Fresnel zone plates; 2.3 Three-dimensional holographic imaging; 2.3.1 Holographic magnifications; 2.3.2 Translational distortion.
  • Example 2.1: Holographic magnification2.3.3 Chromatic aberration; Example 2.2: Chromatic aberration calculation; 2.4 Temporal and spatial coherence; 2.4.1 Temporal coherence; 2.4.2 Coherence time and coherence length; 2.4.3 Some general temporal coherence considerations; 2.4.4 Fourier transform spectroscopy; 2.4.5 Spatial coherence; 2.4.6 Some general spatial coherence considerations; Example 2.3: Double-pinhole interference; Problems; References; 3 Types of holograms; 3.1 Gabor hologram and on-axis (in-line) holography; 3.2 Off-axis holography.
  • Example 3.1: Determination of the offset angle and the required resolving power of the recording medium3.3 Image hologram; Example 3.2: Simulation of an image hologram; 3.4 Fresnel and Fourier holograms; 3.4.1 Fresnel hologram and Fourier hologram; Example 3.3: Simulation of a Fourier transform hologram; 3.4.2 Lensless Fourier hologram; 3.5 Rainbow hologram; Example 3.4: Simulation of a rainbow hologram simulation; Problems; References; 4 Conventional digital holography; 4.1 Sampled signal and discrete Fourier transform; Example 4.1: Under-sampling and aliasing; Example 4.2: Sampling.
  • Example 4.3: Fourier transform of a rectangular function4.2 Recording and limitations of the image sensor; 4.2.1 Imager size; 4.2.2 Pixel pitch; 4.2.3 Modulation transfer function; 4.3 Digital calculations of scalar diffraction; 4.3.1 Angular spectrum method (ASM); Example 4.4: Diffraction of a rectangular aperture; 4.3.2 Validity of the angular spectrum method; 4.3.3 Fresnel diffraction method (FDM); 4.3.4 Validation of the Fresnel diffraction method; Example 4.5: Diffraction of a rectangular aperture (using FDM); 4.3.5 Backward propagation; 4.4 Optical recording of digital holograms.
  • 4.4.1 Recording geometryOn-axis Fresnel holography; Off-axis Fresnel holography; Fourier holography; 4.4.2 Removal of the twin image and the zeroth-order light; Fourier holography; Off-axis Fresnel holography; Example 4.6: Recording an off-axis digital hologram; 4.5 Simulations of holographic recording and reconstruction; Example 4.7: Simulation of on-axis holographic recording and reconstruction; Example 4.8: Simulation of off-axis holographic recording and reconstruction; Problems; References; 5 Digital holography: special techniques; 5.1 Phase-shifting digital holography.