|
|
|
|
LEADER |
00000cam a22000007a 4500 |
001 |
EBSCO_ocn871189825 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
140228s2014 xx o 000 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d EBLCP
|d MHW
|d YDXCP
|d DEBSZ
|d N$T
|d OCLCF
|d OCLCQ
|d FEM
|d AGLDB
|d OCLCQ
|d ICA
|d OCLCQ
|d ZCU
|d XFH
|d MERUC
|d OCLCQ
|d D6H
|d VNS
|d VTS
|d ICG
|d AU@
|d OCLCQ
|d STF
|d DKC
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 968045061
|a 969030194
|a 994457092
|
020 |
|
|
|a 1306461782
|q (electronic bk.)
|
020 |
|
|
|a 9781306461788
|q (electronic bk.)
|
020 |
|
|
|a 9781782169505
|q (electronic bk.)
|
020 |
|
|
|a 1782169504
|q (electronic bk.)
|
020 |
|
|
|a 1782169490
|
020 |
|
|
|a 9781782169499
|
029 |
1 |
|
|a AU@
|b 000053724562
|
029 |
1 |
|
|a AU@
|b 000062534534
|
029 |
1 |
|
|a CHNEW
|b 000887117
|
029 |
1 |
|
|a CHVBK
|b 374460345
|
029 |
1 |
|
|a DEBBG
|b BV043608148
|
029 |
1 |
|
|a DEBSZ
|b 405672640
|
029 |
1 |
|
|a DEBSZ
|b 484719238
|
035 |
|
|
|a (OCoLC)871189825
|z (OCoLC)968045061
|z (OCoLC)969030194
|z (OCoLC)994457092
|
037 |
|
|
|a 577429
|b MIL
|
050 |
|
4 |
|a HD38.7
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
072 |
|
7 |
|a BUS
|x 082000
|2 bisacsh
|
072 |
|
7 |
|a BUS
|x 041000
|2 bisacsh
|
072 |
|
7 |
|a BUS
|x 042000
|2 bisacsh
|
072 |
|
7 |
|a BUS
|x 085000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3/12
|a 658.4/72
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Azarmi, Bahaaldine.
|
245 |
1 |
0 |
|a Talend for Big Data.
|
260 |
|
|
|b Packt Publishing,
|c 2014.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a This book is written in a concise and easy-to-understand manner, and acts as a comprehensive guide on data analytics and integration with Talend big data processing jobs. If you are a chief information officer, enterprise architect, data architect, data scientist, software developer, software engineer, or a data analyst who is familiar with data processing projects and who wants to use Talend to get your first big data job executed in a reliable, quick, and graphical way, then Talend for Big Data is perfect for you.
|
505 |
0 |
|
|a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with Talend Big Data; Talend Unified Platform presentation; Knowing about Hadoop ecosystem; Prerequisites for running examples; Downloading Talend Open Studio for Big Data; Installing TOSBD; Running TOSBD for the first time; Summary; Chapter 2: Building Our First Big Data Job; TOSBD -- the development environment; A simple HDFS writer job; Checking the result in HDFS; Summary; Chapter 3: Formatting Data; Twitter Sentiment Analysis.
|
505 |
8 |
|
|a Writing the tweets in HDFSSetting our Apache Hive tables; Formatting tweets with Apache Hive; Summary; Chapter 4: Processing Tweets with Apache Hive; Extracting hashtags; Extracting emoticons; Joining the dots; Summary; Chapter 5: Aggregate Data with Apache Pig; Knowing about Pig; Extracting the top Twitter users; Extracting the top hashtags, emoticons, and sentiments; Summary; Chapter 6: Back to the SQL Database; Linking HDFS and RDBMS with Sqoop; Exporting and importing data to a MySQL database; Summary; Chapter 7: Big Data Architecture and Integration patterns; Streaming pattern.
|
505 |
8 |
|
|a The Partitioning patternSummary; Appendix: Installing Your Hadoop Cluster with Cloudera CDH VM; Downloading Cloudera CDH VM; Launching the VM for the first time; Basic required configuration; Summary; Index.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Electronic data processing.
|
650 |
|
6 |
|a Données volumineuses.
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
7 |
|a COMPUTERS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Industrial Management.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Management.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Management Science.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Organizational Behavior.
|2 bisacsh
|
650 |
|
7 |
|a Big data.
|2 fast
|0 (OCoLC)fst01892965
|
650 |
|
7 |
|a Data mining.
|2 fast
|0 (OCoLC)fst00887946
|
650 |
|
7 |
|a Electronic data processing.
|2 fast
|0 (OCoLC)fst00906956
|
776 |
0 |
8 |
|i Print version:
|z 9781306461788
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=706609
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 706609
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis27560660
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11673334
|
994 |
|
|
|a 92
|b IZTAP
|