|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn871172601 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
140227s1990 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d CAMBR
|d OCLCQ
|d EBLCP
|d DEBSZ
|d EUX
|d E7B
|d YDXCP
|d OCLCF
|d OSU
|d AGLDB
|d OCLCQ
|d OCLCO
|d VTS
|d REC
|d OCLCA
|d OCLCO
|d STF
|d M8D
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d AJS
|d OCLCO
|d TXE
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 869092159
|a 874150333
|a 985296257
|a 985381396
|
020 |
|
|
|a 9781107720039
|q (electronic bk.)
|
020 |
|
|
|a 1107720036
|q (electronic bk.)
|
020 |
|
|
|a 9781107049994
|q (electronic bk.)
|
020 |
|
|
|a 1107049997
|q (electronic bk.)
|
020 |
|
|
|a 9781107715905
|
020 |
|
|
|a 1107715903
|
020 |
|
|
|a 9781107714557
|
020 |
|
|
|a 1107714559
|
020 |
|
|
|z 0521405734
|
020 |
|
|
|z 9780521405737
|
020 |
|
|
|z 0521321964
|
020 |
|
|
|z 9780521321969
|
029 |
1 |
|
|a AU@
|b 000054197713
|
029 |
1 |
|
|a AU@
|b 000055949903
|
029 |
1 |
|
|a DEBBG
|b BV043036588
|
029 |
1 |
|
|a DEBSZ
|b 400188112
|
029 |
1 |
|
|a DEBSZ
|b 42123105X
|
029 |
1 |
|
|a GBVCP
|b 813641802
|
035 |
|
|
|a (OCoLC)871172601
|z (OCoLC)869092159
|z (OCoLC)874150333
|z (OCoLC)985296257
|z (OCoLC)985381396
|
050 |
|
4 |
|a QA280
|
072 |
|
7 |
|a MAT
|x 003000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 029000
|2 bisacsh
|
082 |
0 |
4 |
|a 519.5/5
|2 22
|
084 |
|
|
|a 31.73
|2 bcl
|
084 |
|
|
|a 83.03
|2 bcl
|
084 |
|
|
|a *62M20
|2 msc
|
084 |
|
|
|a 62-04
|2 msc
|
084 |
|
|
|a 62-01
|2 msc
|
084 |
|
|
|a 62M10
|2 msc
|
084 |
|
|
|a 62P20
|2 msc
|
084 |
|
|
|a QH 237
|2 rvk
|
084 |
|
|
|a SK 845
|2 rvk
|
084 |
|
|
|a MAT 634f
|2 stub
|
084 |
|
|
|a MAT 625f
|2 stub
|
084 |
|
|
|a MAT 626f
|2 stub
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Harvey, A. C.
|q (Andrew C.)
|
245 |
1 |
0 |
|a Forecasting, structural time series models, and the Kalman filter /
|c Andrew Harvey.
|
264 |
|
1 |
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 1989.
|
300 |
|
|
|a 1 online resource (xvi, 554 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 529-542) and indexes.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Half Title; TitlePage; Copyright; Contents; List of figures; Acknowledgement; Preface; Notation and conventions; List of abbreviations; 1 Introduction; 1.1 The nature of time series; 1.2 Explanatory variables and intervention analysis; 1.3 Multivariate models; 1.4 Statistical treatment; 1.5 Modelling methodology; 1.6 Forecasting; 1.7 Computer software; 2 Univariate time series models; 2.1 Introduction; 2.2 Ad hoc forecasting procedures; 2.3 The structure of time series models; 2.4 Stochastic properties; 2.5 ARIMA models and the reduced form; 2.6 ARIMA modelling; 2.7 Applications.
|
505 |
8 |
|
|a Exercises3 State space models and the Kalman filter; 3.1 The state space form; 3.2 The Kalman filter; 3.3 Properties of time-invariant models; 3.4 Maximum likelihood estimation and the prediction errordecomposition; 3.5 Prediction; 3.6 Smoothing; 3.7 Non-linearity and non-normality; Appendix. Properties of the multivariate normal distribution; Exercises; 4 Estimation, prediction and smoothing for univariate structuraltime series models; 4.1 Application of the Kalman filter; 4.2 Estimation in the time domain; 4.3 Estimation in the frequency domain; 4.4 Identifiability.
|
505 |
8 |
|
|a 4.5 Properties of estimators4.6 Prediction; 4.7 Estimation of components; Exercises; 5 Testing and model selection; 5.1 Principles of testing; 5.2 Lagrange multiplier tests; 5.3 Tests of specification for structural models; 5.4 Diagnostics; 5.5 Goodness of fit; 5.6 Post-sample predictive testing and model evaluation; 5.7 Strategy for model selection; Exercises; 6 Extensions of the univariate model; 6.1 Trends, detrending and unit roots; 6.2 Seasonality and seasonal adjustment; 6.3 Different timing intervals for the model and observations; 6.4 Data irregularities.
|
505 |
8 |
|
|a 6.5 Time-varyingand non-linear models6.6 Non-normality, count data and qualitative observations; Exercises; 7 Explanatory variables; 7.1 Introduction; 7.2 Estimation in the frequency domain; 7.3 Estimation of models with explanatory variables andstructural time series components; 7.4 Tests and measures of goodness of fit; 7.5 Model selection strategy and applications; 7.6 Intervention analysis; 7.7 Time-varying parameters; 7.8 Instrumental variables; 7.9 Count data; Exercises; 8 Multivariate models; 8.1 Stochastic properties of multivariate models.
|
505 |
8 |
|
|a 8.2 Seemingly unrelated time series equations8.3 Homogeneous systems; 8.4 Testing and model selection; 8.5 Dynamic factor analysis; 8.6 Intervention analysis with control groups; 8.7 Missing observations, delayed observations and contemporaneousaggregation; 8.8 Vector autoregressive models; 8.9 Simultaneous equation models; Exercises; 9 Continuous time; 9.1 Introduction; 9.2 Stock variables; 9.3 Flow variables; 9.4 Multivariate models; Appendix 1 Principal structural time series components and models; Appendix 2 Data sets; A. Energy demand of Other Final Users.
|
520 |
|
|
|a This book is concerned with modelling economic and social time series and with addressing the special problems which the treatment of such series pose.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Time-series analysis.
|
650 |
|
0 |
|a Kalman filtering.
|
650 |
|
6 |
|a Série chronologique.
|
650 |
|
6 |
|a Filtre de Kalman.
|
650 |
|
7 |
|a MATHEMATICS
|x Applied.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Techniques de prévision.
|2 eclas
|
650 |
|
7 |
|a Modèles économétriques.
|2 eclas
|
650 |
|
7 |
|a Kalman filtering
|2 fast
|
650 |
|
7 |
|a Time-series analysis
|2 fast
|
650 |
|
7 |
|a Kalman-Filter
|2 gnd
|
650 |
|
7 |
|a Zeitreihenanalyse
|2 gnd
|
650 |
1 |
7 |
|a Tijdreeksen.
|2 gtt
|
650 |
1 |
7 |
|a Kalman-filters.
|2 gtt
|
650 |
1 |
7 |
|a Modellen.
|2 gtt
|
650 |
1 |
7 |
|a Prognoses.
|2 gtt
|
650 |
|
7 |
|a Série chronologique.
|2 ram
|
650 |
|
7 |
|a Kalman, filtrage de.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Harvey, A.C. (Andrew C.).
|t Forecasting, structural time series models, and the Kalman filter
|z 9780521405737
|w (DLC) 89031417
|w (OCoLC)19458552
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=676270
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1578959
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10829308
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 676270
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11597153
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11597379
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11605381
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11970866
|
994 |
|
|
|a 92
|b IZTAP
|