|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
EBSCO_ocn869640256 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
140201s2013 enk o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d MHW
|d N$T
|d DEBSZ
|d OCLCQ
|d OCLCF
|d UKMGB
|d OCLCQ
|d OCL
|d OCLCQ
|d LIP
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|
016 |
7 |
|
|a 016629183
|2 Uk
|
019 |
|
|
|a 870650588
|a 990720058
|a 1030104841
|a 1030137815
|
020 |
|
|
|a 9781107342057
|q (electronic bk.)
|
020 |
|
|
|a 1107342058
|q (electronic bk.)
|
020 |
|
|
|a 9781107345805
|q (electronic bk.)
|
020 |
|
|
|a 1107345804
|q (electronic bk.)
|
020 |
|
|
|a 9781107352926
|q (PDF ebook)
|
020 |
|
|
|a 1107352924
|q (PDF ebook)
|
020 |
|
|
|a 9781107032033
|q (hbk.)
|
020 |
|
|
|a 1107032032
|q (hbk.)
|
020 |
|
|
|a 9781139424509
|
020 |
|
|
|a 1139424505
|
029 |
1 |
|
|a DEBSZ
|b 40053715X
|
029 |
1 |
|
|a DEBSZ
|b 445575646
|
029 |
1 |
|
|a GBVCP
|b 777721899
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:9910052562405765
|
035 |
|
|
|a (OCoLC)869640256
|z (OCoLC)870650588
|z (OCoLC)990720058
|z (OCoLC)1030104841
|z (OCoLC)1030137815
|
050 |
|
4 |
|a QA300 .B68 2013
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Garling, D. J. H.
|
245 |
1 |
2 |
|a A Course in Mathematical Analysis.
|n Volume 2 :
|p Metric and Topological Spaces, Functions of a Vector Variable /
|c D.J.H. Garling.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2013.
|
300 |
|
|
|a 1 online resource (336 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover.pdf; Cover; A COURSE IN MATHEMATICAL ANALYSIS; Title; Copyright; Contents; Introduction; Part III Metric and topological spaces; 11 Metric spaces and normed spaces; 11.1 Metric spaces: examples; 11.2 Normed spaces; 11.3 Inner-product spaces; 11.4 Euclidean and unitary spaces; 11.5 Isometries; 11.6 *The Mazur-Ulam theorem*; 11.7 The orthogonal group bold0mu mumu OdOdOdOdOdOd; 12 Convergence, continuity and topology; 12.1 Convergence of sequences in a metric space; 12.2 Convergence and continuity of mappings; 12.3 The topology of a metric space.
|
505 |
8 |
|
|a 12.4 Topological properties of metric spaces13 Topological spaces; 13.1 Topological spaces; 13.2 The product topology; 13.3 Product metrics; 13.4 Separation properties; 13.5 Countability properties; 13.6 *Examples and counterexamples*; 14 Completeness; 14.1 Completeness; 14.2 Banach spaces; 14.3 Linear operators; 14.4 *Tietze's extension theorem*; 14.5 The completion of metric and normed spaces; 14.6 The contraction mapping theorem; 14.7 *Baire's category theorem*; 15 Compactness; 15.1 Compact topological spaces; 15.2 Sequentially compact topological spaces; 15.3 Totally bounded metric spaces.
|
505 |
8 |
|
|a 15.4 Compact metric spaces15.5 Compact subsets of C(K); 15.6 *The Hausdorff metric*; 15.7 Locally compact topological spaces; 15.8 Local uniform convergence; 15.9 Finite-dimensional normed spaces; 16 Connectedness; 16.1 Connectedness; 16.2 Paths and tracks; 16.3 Path-connectedness; 16.4 *Hilbert's path*; 16.5 *More space-filling paths*; 16.6 Rectifiable paths; Part IV Functions of a vector variable; 17 Differentiating functions of a vector variable; 17.1 Differentiating functions of a vector variable; 17.2 The mean-value inequality; 17.3 Partial and directional derivatives.
|
505 |
8 |
|
|a 17.4 The inverse mapping theorem17.5 The implicit function theorem; 17.6 Higher derivatives; 18 Integrating functions of several variables; 18.1 Elementary vector-valued integrals; 18.2 Integrating functions of several variables; 18.3 Integrating vector-valued functions; 18.4 Repeated integration; 18.5 Jordan content; 18.6 Linear change of variables; 18.7 Integrating functions on Euclidean space; 18.8 Change of variables; 18.9 Differentiation under the integral sign; 19 Differential manifolds in Euclidean space; 19.1 Differential manifolds in Euclidean space; 19.2 Tangent vectors.
|
505 |
8 |
|
|a 19.3 One-dimensional differential manifolds19.4 Lagrange multipliers; 19.5 Smooth partitions of unity; 19.6 Integration over hypersurfaces; 19.7 The divergence theorem; 19.8 Harmonic functions; 19.9 Curl; B Linear algebra; B.1 Finite-dimensional vector spaces; B.2 Linear mappings and matrices; B.3 Determinants; B.4 Cramer's rule; B.5 The trace; C Exterior algebras and the cross product; C.1 Exterior algebras; C.2 The cross product; D Tychonoff's theorem; Index; Contents for Volume I; Contents for Volume III.
|
520 |
|
|
|a The second volume of three providing a full and detailed account of undergraduate mathematical analysis.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Mathematical analysis.
|
650 |
|
6 |
|a Analyse mathématique.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Mathematical analysis.
|2 fast
|0 (OCoLC)fst01012068
|
776 |
0 |
8 |
|i Print version:
|a Garling, D.J.H.
|t Course in Mathematical Analysis.
|d Cambridge : Cambridge University Press, 2013
|z 9781107345805
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=545672
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26050201
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1139728
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 545672
|
994 |
|
|
|a 92
|b IZTAP
|