Tractability : practical approaches to hard problems /
An overview of the techniques developed to circumvent computational intractability, a key challenge in many areas of computer science.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2014.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Tractability
- Title Page
- Copyright Page
- Contents
- Contributors
- Introduction
- Part 1: Graphical Structure
- 1 Treewidth and Hypertree Width
- 1.1 Treewidth
- 1.2 Hypertree width
- 1.3 Applications of hypertree width
- 1.4 Beyond (hyper)tree decompositions
- 1.5 Tractability frontiers (for CSPs)
- 1.6 Conclusion
- References
- 2 Perfect Graphs and Graphical Modeling
- 2.1 Berge Graphs and Perfect Graphs
- 2.2 Computational Properties of Perfect Graphs
- 2.3 Graphical Models
- 2.4 Nand Markov Random Fields
- 2.5 Maximum Weight Stable Set2.6 Tractable Graphical Models
- 2.7 Discussion
- 2.8 Acknowledgments
- 2.9 Appendix
- References
- Part 2: Language Restrictions
- 3 Submodular Function Maximization
- 3.1 Submodular Functions
- 3.2 Greedy Maximization of Submodular Functions
- 3.3 Beyond the Greedy Algorithm: Handling More Complex Constraints
- 3.4 Online Maximization of Submodular Functions
- 3.5 Adaptive Submodularity
- 3.6 Conclusions
- References
- 4 Tractable Valued Constraints
- 4.1 Introduction
- 4.2 Constraint Satisfaction Problems
- 4.3 Valued Constraint Satisfaction Problems4.4 Examples of Valued Constraint Languages
- 4.5 Expressive Power
- 4.6 Submodular Functions and Multimorphisms
- 4.7 Conservative Valued Constraint Languages
- 4.8 A General Algebraic Theory of Complexity
- 4.9 Conclusions and Open Problems
- References
- 5 Tractable Knowledge Representation Formalisms
- 5.1 Introduction
- 5.2 A Motivating Example
- 5.3 Negation Normal Form
- 5.4 Structured Decomposability
- 5.5 (X, Y)-Decompositions of Boolean Functions
- 5.6 Sentential Decision Diagrams
- 5.7 The Process of Compilation5.8 Knowledge Compilation in Probabilistic Reasoning
- 5.9 Conclusion
- References
- Part 3: Algorithms and their Analysis
- 6 Tree-Reweighted Message Passing
- 6.1 Introduction
- 6.2 Preliminaries
- 6.3 Sequential Tree-Reweighted Message Passing (TRW-S)
- 6.4 Analysis of the Algorithm
- 6.5 TRW-S with Monotonic Chains
- 6.6 Summary of the TRW-S Algorithm
- 6.7 Related Approaches
- 6.8 Conclusions and Discussion
- References
- 7 Tractable Optimization in Machine Learning
- 7.1 Introduction
- 7.2 Background
- 7.3 Smooth Convex Optimization7.4 Nonsmooth Convex Optimization
- 7.5 Stochastic Optimization
- 7.6 Summary
- References
- 8 Approximation Algorithms
- 8.1 Introduction
- 8.2 Combinatorial Algorithms
- 8.3 Linear Programming Based Algorithms
- 8.4 Semi-Definite Programming Based Algorithms
- 8.5 Algorithms for Special Instances
- 8.6 Metric Embeddings
- 8.7 Hardness of Approximation
- References
- 9 Kernelization Methods for Fixed-Parameter Tractability
- 9.1 Introduction
- 9.2 Basic Definitions
- 9.3 Classical Techniques