Cargando…

Notes on forcing axioms /

In the mathematical practice, the Baire category method is a tool for establishing the existence of a rich array of generic structures. However, in mathematics, the Baire category method is also behind a number of fundamental results such as the open mapping theorem or the Banach-Steinhaus boundedne...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Todorcevic, Stevo (Autor)
Otros Autores: Chong, C.-T. (Chi-Tat), 1949- (Editor ), Feng, Qi, 1955- (Editor ), Yang, Yue, 1964- (Editor ), Slaman, T. A. (Theodore Allen), 1954- (Editor ), Woodin, W. H. (W. Hugh) (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Hackensack] New Jersey : World Scientific, [2014]
Colección:Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ; v. 26.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn869457463
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mn|||||||||
008 140130s2014 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d CDX  |d OSU  |d I9W  |d GGVRL  |d DEBSZ  |d E7B  |d OCLCF  |d OCLCQ  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d OCLCQ  |d U3W  |d STF  |d VTS  |d NRAMU  |d OCLCQ  |d INT  |d OTZ  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d M8D  |d UKAHL  |d UX1  |d HS0  |d UWK  |d ADU  |d K6U  |d ESU  |d UKCRE  |d CN6UV  |d DGN  |d AJS  |d S2H  |d OCLCO  |d OCL  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 870962529  |a 1058683464 
020 |a 9789814571586  |q (electronic bk.) 
020 |a 981457158X  |q (electronic bk.) 
020 |a 9781306396578 
020 |a 1306396573 
020 |z 9789814571579 
020 |z 9814571571 
029 1 |a CHNEW  |b 000666442 
029 1 |a CHNEW  |b 000686926 
029 1 |a DEBBG  |b BV043038472 
029 1 |a DEBSZ  |b 421222956 
029 1 |a GBVCP  |b 80512487X 
029 1 |a NZ1  |b 15626414 
035 |a (OCoLC)869457463  |z (OCoLC)870962529  |z (OCoLC)1058683464 
037 |a 570908  |b MIL 
050 4 |a QA9.7  |b .T63 2014eb 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
049 |a UAMI 
100 1 |a Todorcevic, Stevo,  |e author. 
245 1 0 |a Notes on forcing axioms /  |c Stevo Todorcevic, University of Toronto, Canada ; editors, Chitat Chong, Qi Feng, Yue Yang, National University of Singapore, Singapore, Theodore A. Slaman, W Hugh Woodin, University of California, Berkeley, USA. 
264 1 |a [Hackensack] New Jersey :  |b World Scientific,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource (xiii, 219 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture notes series (Institute for Mathematical Sciences, National University of Singapore) ;  |v vol. 26 
504 |a Includes bibliographical references (pages 217-219) and index. 
588 0 |a Print version record. 
520 |a In the mathematical practice, the Baire category method is a tool for establishing the existence of a rich array of generic structures. However, in mathematics, the Baire category method is also behind a number of fundamental results such as the open mapping theorem or the Banach-Steinhaus boundedness principle. This volume brings the Baire category method to another level of sophistication via the internal version of the set-theoretic forcing technique. It is the first systematic account of applications of the higher forcing axioms with the stress on the technique of building forcing notions rather than on the relationship between different forcing axioms or their consistency strengths. 
505 0 |a 1. Baire category theorem and the Baire category numbers -- 2. Coding sets by the real numbers -- 3. Consequences in descriptive set theory -- 4. Consequences in measure theory -- 5. Variations on the Souslin hypothesis -- 6. The S-s-paces and the L-spaces -- 7. The side-condition method -- 8. Ideal dichotomies -- 9. Coherent and Lipschitz trees -- 10. Applications to the S-space problem and the von Neumann problem -- 11. Biorthogonal systems -- 12. Structure of compact spaces -- 13. Ramsey theory on ordinals -- 14. Five cofinal types -- 15. Five linear orderings -- 16. Cardinal arithmetic and mm -- 17. Reflection principles. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Forcing (Model theory) 
650 0 |a Axioms. 
650 0 |a Baire classes. 
650 6 |a Forcing (Théorie des modèles) 
650 6 |a Axiomes. 
650 6 |a Classes de Baire. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Axioms.  |2 fast  |0 (OCoLC)fst00824492 
650 7 |a Baire classes.  |2 fast  |0 (OCoLC)fst00825536 
650 7 |a Forcing (Model theory)  |2 fast  |0 (OCoLC)fst00931616 
655 7 |a maxims.  |2 aat 
655 7 |a aphorisms.  |2 aat 
655 7 |a proverbs.  |2 aat 
655 7 |a Sayings.  |2 fast  |0 (OCoLC)fst01920779 
655 7 |a Sayings.  |2 lcgft 
655 7 |a Proverbes.  |2 rvmgf 
700 1 |a Chong, C.-T.  |q (Chi-Tat),  |d 1949-  |e editor. 
700 1 |a Feng, Qi,  |d 1955-  |e editor. 
700 1 |a Yang, Yue,  |d 1964-  |e editor. 
700 1 |a Slaman, T. A.  |q (Theodore Allen),  |d 1954-  |e editor. 
700 1 |a Woodin, W. H.  |q (W. Hugh),  |e editor. 
776 0 8 |i Print version:  |a Todorcevic, Stevo.  |t Notes on forcing axioms.  |d New Jersey : World Scientific, 2014  |z 9789814571579  |w (DLC) 2013042520  |w (OCoLC)861554483 
830 0 |a Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ;  |v v. 26. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=689761  |z Texto completo 
880 0 |6 505-00/(S  |a 1. Baire category theorem and the Baire category numbers. 1.1. The Baire category method - a classical example. 1.2. Baire category numbers. 1.3. P-clubs. 1.4. Baire category numbers of posets. 1.5. Proper and semi-proper posets -- 2. Coding sets by the real numbers. 2.1. Almost-disjoint coding. 2.2. Coding families of unordered pairs of ordinals. 2.3. Coding sets of ordered pairs. 2.4. Strong coding. 2.5. Solovay's lemma and its corollaries -- 3. Consequences in descriptive set theory. 3.1. Borel isomorphisms between Polish spaces. 3.2. Analytic and co-analytic sets. 3.3. Analytic and co-analytic sets under p > ω1 -- 4. Consequences in measure theory. 4.1. Measure spaces. 4.2. More on measure spaces -- 5. Variations on the Souslin hypothesis. 5.1. The countable chain condition. 5.2. The Souslin hypothesis. 5.3. A selective ultrafilter from m > ω1. 5.4. The countable chain condition versus the separability -- 6. The S-spaces and the L-spaces. 6.1. Hereditarily separable and hereditarily Lindelöf spaces. 6.2. Countable tightness and the S- and L-space problems -- 7. The side-condition method. 7.1. Elementary submodels as side conditions. 7.2. Open graph axiom -- 8. Ideal dichotomies. 8.1. Small ideal dichotomy. 8.2. Sparse set-mapping principle. 8.3. P-ideal dichotomy -- 9. Coherent and Lipschitz trees. 9.1. The Lipschitz condition. 9.2. Filters and trees. 9.3. Model rejecting a finite set of nodes. 9.4. Coloring axiomfor coherent trees -- 10. Applications to the S-space problem and the von Neumann problem. 10.1. The S-space problem and its relatives. 10.2. The P-ideal dichotomy and a problem of von Neumann -- 11. Biorthogonal systems. 11.1. The quotient problem. 11.2. A topological property of the dual ball. 11.3. A problem of Rolewicz. 11.4. Function spaces -- 12. Structure of compact spaces. 12.1. Covergence in topology. 12.2. Ultrapowers versus reduced powers. 12.3. Automatic continuity in Banach algebras -- 13. Ramsey theory on ordinals. 13.1. The arrow notation. 13.2. ω2[symbol]. 13.3. ω1[symbol] -- 14. Five cofinal types. 14.1. Tukey reductions and cofinal equivalence. 14.2. Directed posets of cardinality at most [symbol]. 14.3. Directed sets of cardinality continuum -- 15. Five linear orderings. 15.1. Basis problem for uncountable linear orderings. 15.2. Separable linear orderings. 15.3. Ordered coherent trees. 15.4. Aronszajn orderings -- 16. Cardinal arithmetic and mm. 16.1. mm and the continuum. 16.2. mm and cardinal arithmetic above the continuum -- 17. Reflection principles. 17.1. Strong reflection of stationary sets. 17.2. Weak reflection of stationary sets. 17.3. Open stationary set-mapping reflection. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26186995 
938 |a Coutts Information Services  |b COUT  |n 27396242 
938 |a ebrary  |b EBRY  |n ebr10832710 
938 |a EBSCOhost  |b EBSC  |n 689761 
938 |a Cengage Learning  |b GVRL  |n GVRL8QYR 
938 |a YBP Library Services  |b YANK  |n 11593490 
994 |a 92  |b IZTAP