Matrix spaces and Schur multipliers : matriceal harmonic analysis /
This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrice...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[Hackensack] New Jersey :
World Scientific,
2014.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction. 1.1. Preliminary notions and notations
- 2. Integral operators in infinite matrix theory. 2.1. Periodical integral operators. 2.2. Nonperiodical integral operators. 2.3. Some applications of integral operators in the classical theory of infinite matrices
- 3. Matrix versions of spaces of periodical functions. 3.1. Preliminaries. 3.2. Some properties of the space C[symbol]. 3.3. Another characterization of the space C[symbol] and related results. 3.4. A matrix version for functions of bounded variation. 3.5. Approximation of infinite matrices by matriceal Haar polynomials. 3.6. Lipschitz spaces of matrices; a characterization
- 4. Matrix versions of Hardy spaces. 4.1. First properties of matriceal Hardy space. 4.2. Hardy-Schatten spaces. 4.3. An analogue of the Hardy inequality in T[symbol]. 4.4. The Hardy inequality for matrix-valued analytic functions. 4.5. A characterization of the space T[symbol]. 4.6. An extension of Shields's inequality
- 5. The matrix version of BMOA. 5.1. First properties of BMOA[symbol] space. 5.2. Another matrix version of BMO and matriceal Hankel operators. 5.3. Nuclear Hankel operators and the space M[symbol]
- 6. Matrix version of Bergman spaces. 6.1. Schatten class version of Bergman spaces. 6.2. Some inequalities in Bergman-Schatten classes. 6.3. A characterization of the Bergman-Schatten space. 6.4. Usual multipliers in Bergman-Schatten spaces
- 7. A matrix version of Bloch spaces. 7.1. Elementary properties of Bloch matrices. 7.2. Matrix version of little Bloch space
- 8. Schur multipliers on analytic matrix spaces.