|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn868952925 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
130501s2010 enk ob 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCO
|d N$T
|d OCLCF
|d YDXCP
|d EBLCP
|d OCLCQ
|d AGLDB
|d OCLCQ
|d STF
|d VTS
|d M8D
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 922972719
|
020 |
|
|
|a 9780191581427
|q (electronic bk.)
|
020 |
|
|
|a 0191581429
|q (electronic bk.)
|
020 |
|
|
|z 9780198566755
|
029 |
1 |
|
|a DEBBG
|b BV043028141
|
029 |
1 |
|
|a DEBSZ
|b 446445940
|
035 |
|
|
|a (OCoLC)868952925
|z (OCoLC)922972719
|
050 |
|
4 |
|a QC174.12
|b .Z56 2010eb
|
072 |
|
7 |
|a SCI
|x 024000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 041000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 055000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.12
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Zinn-Justin, Jean.
|
245 |
1 |
0 |
|a Path integrals in quantum mechanics /
|c Jean Zinn-Justin.
|
264 |
|
1 |
|a Oxford :
|b Oxford University Press,
|c 2010.
|
300 |
|
|
|a 1 online resource (355 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Oxford graduate texts
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ebrary, viewed October 10, 2013).
|
505 |
0 |
|
|a ""Cover""; ""Contents""; ""1 Gaussian integrals""; ""1.1 Generating function""; ""1.2 Gaussian expectation values. Wick�s theorem""; ""1.3 Perturbed gaussian measure. Connected contributions""; ""1.4 Expectation values. Generating function. Cumulants""; ""1.5 Steepest descent method""; ""1.6 Steepest descent method: several variables, generating functions""; ""1.7 Gaussian integrals: complex matrices""; ""Exercises""; ""2 Path integrals in quantum mechanics""; ""2.1 Local markovian processes""; ""2.2 Solution of the evolution equation for short times""; ""2.3 Path integral representation""
|
505 |
8 |
|
|a ""2.4 Explicit calculation: gaussian path integrals""""2.5 Correlation functions: generating functional""; ""2.6 General gaussian path integral and correlation functions""; ""2.7 Quantum harmonic oscillator: the partition function""; ""2.8 Perturbed harmonic oscillator""; ""2.9 Perturbative expansion in powers of ħ""; ""2.10 Semi-classical expansion""; ""Exercises""; ""3 Partition function and spectrum""; ""3.1 Perturbative calculation""; ""3.2 Semi-classical or WKB expansion""; ""3.3 Path integral and variational principle""; ""3.4 O(N) symmetric quartic potential for N â?? â?ž""
|
505 |
8 |
|
|a 3.5 Operator determinants3.6 Hamiltonian: structure of the ground state -- Exercises -- 4 Classical and quantum statistical physics -- 4.1 Classical partition function. Transfer matrix -- 4.2 Correlation functions -- 4.3 Classical model at low temperature: an example -- 4.4 Continuum limit and path integral -- 4.5 The two-point function: perturbative expansion, spectral representation -- 4.6 Operator formalism. Time-ordered products -- Exercises -- 5 Path integrals and quantization -- 5.1 Gauge transformations
|
505 |
8 |
|
|a ""5.2 Coupling to a static magnetic field: gauge symmetry""""5.3 Quantization and path integrals""; ""5.4 Static magnetic field: direct calculation""; ""5.5 Diffusion, random walk, Fokker�Planck equation""; ""5.6 The spectrum of the O(2) rigid rotator""; ""Exercises""; ""6 Path integrals and holomorphic formalism""; ""6.1 Complex integrals and Wick�s theorem""; ""6.2 Holomorphic representation""; ""6.3 Kernel of operators""; ""6.4 Path integral: the harmonic oscillator""; ""6.5 Path integral: general hamiltonians""; ""6.6 Bosons: second quantization""
|
505 |
8 |
|
|a ""6.7 Quantum statistical physics: the partition function""""6.8 Bose�Einstein condensation""; ""6.9 Generalized path integrals: the quantum Bose gas""; ""6.10 Partition function: the field integral representation""; ""Exercises""; ""7 Path integrals: fermions""; ""7.1 Grassmann algebras""; ""7.2 Differentiation in Grassmann algebras""; ""7.3 Integration in Grassmann algebras""; ""7.4 Gaussian integrals and perturbative expansion""; ""7.5 Fermion vector space and operators: one state""; ""7.6 General Grassmann analytic functions""; ""7.7 Many-fermion states. Hamiltonians""
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Path integrals.
|
650 |
|
0 |
|a Quantum theory.
|
650 |
|
2 |
|a Quantum Theory
|
650 |
|
6 |
|a Intégrales de chemin.
|
650 |
|
6 |
|a Théorie quantique.
|
650 |
|
7 |
|a SCIENCE
|x Energy.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Mechanics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Physics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Path integrals
|2 fast
|
650 |
|
7 |
|a Quantum theory
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Zinn-Justin, Jean.
|t Path Integrals in Quantum Mechanics.
|d Oxford : OUP Oxford, ©2004
|z 9780198566755
|
830 |
|
0 |
|a Oxford graduate texts.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=643992
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3055650
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10768391
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 643992
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11588815
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3208723
|
994 |
|
|
|a 92
|b IZTAP
|