Cargando…

Geostatistical reservoir modeling /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Deutsch, Clayton V.
Otros Autores: Pyrcz, Michael
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Oxford University Press, [2014]
Edición:2nd edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. Introduction
  • 1.1. Comments on Second Edition
  • 1.2. Plan for the Book
  • 1.3. Key Concepts
  • 1.4. Motivation for Reservoir Models
  • 1.5. Data for Reservoir Modeling
  • 1.6. The Common Work Flow
  • 1.7. An Introductory Example
  • 1.8. Work Flow Diagrams
  • 2. Modeling Principles
  • 2.1. Preliminary Geological Modeling Concepts
  • 2.1.1. The Story
  • 2.1.2. Geological Models
  • 2.1.3. Geological Model Overview
  • 2.1.4. Basin Formation and Filling
  • 2.1.5. Reservoir Architecture
  • 2.1.6. Example Stories and Reservoir Modeling Significance
  • 2.1.7. Section Summary
  • 2.2. Preliminary Statistical Concepts
  • 2.2.1. Geological Populations and Stationarity
  • 2.2.2. Notation and Definitions
  • 2.2.3. Bivariate Distributions
  • 2.2.4. Q
  • Q Plots and Data Transformation
  • 2.2.5. Data Transformation
  • 2.2.6. Declustering and Debiasing.
  • 2.2.7. Histogram and Cross-Plot Smoothing
  • 2.2.8. Monte Carlo Simulation
  • 2.2.9. Parameter Uncertainty
  • 2.2.10. Bayesian Statistics
  • 2.2.11. Work Flow
  • 2.2.12. Section Summary
  • 2.3. Quantifying Spatial Correlation
  • 2.3.1. The Random Function Concept
  • 2.3.2. Calculating Experimental Variograms
  • 2.3.3. Interpreting Experimental Variograms
  • 2.3.4. Horizontal Variograms
  • 2.3.5. Variogram Modeling
  • 2.3.6. Cross Variograms
  • 2.3.7. Multiple-Point Statistics
  • 2.3.8. Volume Variance Relations
  • 2.3.9. Work Flow
  • 2.3.10. Section Summary
  • 2.4. Preliminary Mapping Concepts
  • 2.4.1. Kriging and Cokriging
  • 2.4.2. Sequential Gaussian Simulation
  • 2.4.3. Indicator Formalism
  • 2.4.4. P-Field Methods
  • 2.4.5. Multiple-Point Simulation
  • 2.4.6. Object-Based Simulation
  • 2.4.7. Optimization Algorithms for Modeling
  • 2.4.8. Accounting for Trends
  • 2.4.9. Alternatives for Secondary Data Integration.
  • 2.4.10. Work Flow
  • 2.4.11. Section Summary
  • 3. Modeling Prerequisites
  • 3.1. Data Inventory
  • 3.1.1. Data Events
  • 3.1.2. Well Data
  • 3.1.3. Seismic Data
  • 3.1.4. Dynamic Data
  • 3.1.5. Analog Data
  • 3.1.6. Data Considerations
  • 3.1.7. Section Summary
  • 3.2. Conceptual Model
  • 3.2.1. Conceptual Geological Model
  • 3.2.2. Model Framework
  • 3.2.3. Modeling Method Choice
  • 3.2.4. Statistical Inputs and Geological Rules
  • 3.2.5. Work Flow
  • 3.2.6. Section Summary
  • 3.3. Problem Formulation
  • 3.3.1. Goal and Purpose Definition
  • 3.3.2. Modeling Work Constraints
  • 3.3.3. Synthetic Paleo-basin
  • 3.3.4. Modeling Work Flows
  • 3.3.5. Reporting and Documentation
  • 3.3.6. Work Flow
  • 3.3.7. Section Summary
  • 4. Modeling Methods
  • 4.1. Large-Scale Modeling
  • 4.1.1. Structure and Bounding Surfaces
  • 4.1.2. Identification of Regions
  • 4.1.3. Trend Model Construction
  • 4.1.4. Multivariate Mapping.
  • 4.1.5. Summarization and Visualization
  • 4.1.6. Section Summary
  • 4.2. Variogram-Based Facies Modeling
  • 4.2.1. Comments on Facies Modeling
  • 4.2.2. Sequential Indicator Simulation
  • 4.2.3. Truncated Gaussian Simulation
  • 4.2.4. Cleaning Cell-Based Facies Realizations
  • 4.2.5. Work Flow
  • 4.2.6. Section Summary
  • 4.3. Multiple-Point Facies Modeling
  • 4.3.1. Multiple-Point Simulation
  • 4.3.2. Sequential Simulation with MPS
  • 4.3.3. Input Statistics
  • 4.3.4. Implementation Details
  • 4.3.5. Work Flow
  • 4.3.6. Section Summary
  • 4.4. Object-Based Facies Modeling
  • 4.4.1. Background
  • 4.4.2. Stochastic Shales
  • 4.4.3. Fluvial Modeling
  • 4.4.4. Nonfluvial Depositional Systems
  • 4.4.5. Work Flow
  • 4.4.6. Section Summary
  • 4.5. Process-Mimicking Facies Modeling
  • 4.5.1. Background
  • 4.5.2. Process-Mimicking Modeling
  • 4.5.3. Work Flow
  • 4.5.4. Section Summary
  • 4.6. Porosity and Permeability Modeling.
  • 4.6.1. Background
  • 4.6.2. Gaussian Techniques for Porosity
  • 4.6.3. Seismic Data in SGS for Porosity
  • 4.6.4. Porosity/Permeability Transforms
  • 4.6.5. Gaussian Techniques for Permeability
  • 4.6.6. Indicator Technique for Permeability
  • 4.6.7. Work Flow
  • 4.6.8. Section Summary
  • 4.7. Optimization for Model Construction
  • 4.7.1. Background
  • 4.7.2. Simulated Annealing
  • 4.7.3. Perturbation Mechanism
  • 4.7.4. Update Objective Function
  • 4.7.5. Decision Rule
  • 4.7.6. Problem Areas
  • 4.7.7. Other Methods
  • 4.7.8. Work Flow
  • 4.7.9. Section Summary
  • 5. Model Applications
  • 5.1. Model Checking
  • 5.1.1. Background
  • 5.1.2. Minimum Acceptance Checks
  • 5.1.3. High-Order Checks
  • 5.1.4. Cross Validation and the Jackknife
  • 5.1.5. Checking Distributions of Uncertainty
  • 5.1.6. Work Flow
  • 5.1.7. Section Summary
  • 5.2. Model Post-processing
  • 5.2.1. Background
  • 5.2.2. Model Modification.
  • 5.2.3. Model Scaling
  • 5.2.4. Pointwise Summary Models
  • 5.2.5. Joint Summary Models
  • 5.2.6. Work Flow
  • 5.2.7. Section Summary
  • 5.3. Uncertainty Management
  • 5.3.1. Background
  • 5.3.2. Uncertainty Considerations
  • 5.3.3. How Many Realizations?
  • 5.3.4. Summarizing Uncertainty
  • 5.3.5. Uncertainty Versus Well Spacing
  • 5.3.6. Case for Geometric Criteria
  • 5.3.7. Ranking Realizations
  • 5.3.8. Decision Making with Uncertainty
  • 5.3.9. Work Flow
  • 5.3.10. Section Summary
  • 6. Special Topics
  • 6.1. Unstructured Grids
  • 6.2. Continuous Variable Heterogeneity
  • 6.3. More Estimation Methods
  • 6.4. Spectral Methods
  • 6.5. Surface-Based Modeling
  • 6.6. Ensemble Kalman Filtering
  • 6.7. Advanced Geological Characterization
  • 6.8. Other Emerging Techniques
  • 6.9. Final Thoughts
  • A. Glossary and Notation
  • A.1. Glossary
  • A.2. Notation.