Cargando…

Convex bodies : the Brunn-Minkowski theory /

"At the heart of this monograph is the Brunn-Minkowski theory. It can be used to great effect in studying such ideas as volume and surface area and the generalizations of these. In particular the notions of mixed volume and mixed area arise naturally and the fundamental inequalities that are sa...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schneider, Rolf, 1940-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, [1993]
Colección:Encyclopedia of mathematics and its applications ; v. 44.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn864551999
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 131203s1993 enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d E7B  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d OCLCO  |d VTS  |d REC  |d OCLCO  |d STF  |d M8D  |d OCLCO  |d INARC  |d SFB  |d OCLCQ  |d OCLCO  |d QGK  |d TXE  |d OCLCQ  |d OCLCO 
019 |a 715161682  |a 1259177786 
020 |a 9781107087941  |q (electronic bk.) 
020 |a 1107087945  |q (electronic bk.) 
020 |z 0521352207 
020 |z 9780521352208 
020 |z 9780521059916 
020 |z 0521059917 
020 |a 1139884360 
020 |a 9781139884365 
020 |a 1107102618 
020 |a 9781107102613 
020 |a 1107094151 
020 |a 9781107094154 
020 |a 0511526288 
020 |a 9780511526282 
029 1 |a DEBBG  |b BV043037085 
029 1 |a DEBSZ  |b 421262273 
035 |a (OCoLC)864551999  |z (OCoLC)715161682  |z (OCoLC)1259177786 
050 4 |a QA649  |b .S353 1993eb 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516.3/74  |2 22 
084 |a 31.52  |2 bcl 
084 |a 31.59  |2 bcl 
084 |a *52-02  |2 msc 
084 |a 33C55  |2 msc 
084 |a 52A20  |2 msc 
084 |a 52A22  |2 msc 
084 |a 52A39  |2 msc 
084 |a 52A40  |2 msc 
084 |a SK 370  |2 rvk 
084 |a SK 380  |2 rvk 
049 |a UAMI 
100 1 |a Schneider, Rolf,  |d 1940- 
245 1 0 |a Convex bodies :  |b the Brunn-Minkowski theory /  |c Rolf Schneider. 
264 1 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c [1993] 
264 4 |c ©1993 
300 |a 1 online resource (xiii, 490 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of mathematics and its applications ;  |v volume 44 
504 |a Includes bibliographical references (pages 433-473) and index. 
520 1 |a "At the heart of this monograph is the Brunn-Minkowski theory. It can be used to great effect in studying such ideas as volume and surface area and the generalizations of these. In particular the notions of mixed volume and mixed area arise naturally and the fundamental inequalities that are satisfied by mixed volumes are considered in detail." "The author presents a comprehensive introduction to convex bodies and gives full proofs for some deeper theorems which have never previously been brought together. Many hints and pointers to connections with other fields are given, and an exhaustive reference list is included."--Jacket 
588 0 |a Print version record. 
505 0 |a Cover; Half-title; Title; Copyright; Contents; Preface; Conventions and notation; 1 Basic convexity; 1.1 Convex sets and combinations; 1.2 The metric projection; 1.3 Support and separation; 1.4 Extremal representations; 1.5 Convex functions; 1.6 Duality; 1.7 The support function; 1.8 The Hausdorff metric; 2 Boundary structure; 2.1 Facial structure; 2.2 Singularities; 2.3 Segments in the boundary; 2.4 Polytopes; 2.5 Higher regularity and curvature; 2.6 Generic boundary structure; 3 Minkowski addition; 3.1 Minkowski addition and subtraction; 3.2 Summands and decomposition 
505 8 |a 3.3 Approximation and addition3.4 Additive maps; 3.5 Zonoids and other classes of convex bodies; 4 Curvature measures and quermassintegrals; 4.1 Local parallel sets; 4.2 Curvature measures and area measures; 4.3 The area measure of order one; 4.4 Additive extension; 4.5 Integral-geometric formulae; 4.6 Local behaviour of curvature measures; 5 Mixed volumes and related concepts; 5.1 Mixed volumes and mixed area measures; 5.2 Extensions of mixed volumes; 5.3 Special formulae for mixed volumes and quermassintegrals; 5.4 Moment vectors and curvature centroids; 6 Inequalities for mixed volumes 
505 8 |a 6.1 The Brunn-Minkowski theorem6.2 The Minkowski and isoperimetric inequalities; 6.3 The Aleksandrov-Fenchel inequality; 6.4 Consequences and improvements; 6.5 Generalized parallel bodies; 6.6 Equality cases and stability; 6.7 Linear inequalities; 6.8 Analogous notions and inequalities; 7 Selected applications; 7.1 Minkowski's existence theorem; 7.2 Uniqueness theorems for area measures; 7.3 The difference-body inequality; 7.4 Affinely associated bodies; Appendix Spherical harmonics; References; List of symbols; Author index; Subject index 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Convex bodies. 
650 6 |a Corps convexes. 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Convex bodies  |2 fast 
650 7 |a Konvexer Körper  |2 gnd 
650 7 |a Corps convexes.  |2 ram 
650 7 |a Géométrie analytique.  |2 ram 
776 0 8 |i Print version:  |a Schneider, Rolf, 1940-  |t Convex bodies  |z 0521352207  |w (DLC) 92011481  |w (OCoLC)25629815 
830 0 |a Encyclopedia of mathematics and its applications ;  |v v. 44. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569310  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10450673 
938 |a EBSCOhost  |b EBSC  |n 569310 
938 |a Internet Archive  |b INAR  |n convexbodiesbrun0000schn 
938 |a YBP Library Services  |b YANK  |n 11410926 
994 |a 92  |b IZTAP