Cargando…

Pentaho for Big Data Analytics.

The book is a practical guide, full of step-by-step examples that are easy to follow and implement. This book is for developers, system administrators, and business intelligence professionals looking to learn how to get more out of their data through Pentaho. In order to best engage with the example...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: R. Patil, Manoj
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2013.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1:The Rise of Pentaho Analytics along with Big Data; Pentaho BI Suite
  • components; Data; Server applications; Thin Client Tools; Design tools; Edge over competitors; Summary; Chapter 2:Setting Up the Ground; Pentaho BI Server and the development platform; Prerequisites/system requirements; Obtaining Pentaho BI Server (Community Edition); JAVA_HOME and JRE_HOME; Running Pentaho BI Server; Pentaho User Console (PUC); Pentaho Action Sequence and solution.
  • JPivot component exampleMessage template component example; Embedded HSQLDB database server; Pentaho Marketplace; Saiku installation; Pentaho Administration Console (PAC); Creating data connections; Summary; Chapter 3:Churning Big Data with Pentaho; An overview of Big Data and Hadoop; Big Data; Hadoop; The Hadoop architecture; The Hadoop ecosystem; Hortonworks Sandbox; Pentaho Data Integration (PDI); Pentaho Big Data plugin configuration; Importing data to Hive; Putting a data file into HDFS; Loading data from HDFS into Hive (job orchestration); Summary.
  • Chapter 4:Pentaho Business Analytics ToolsThe business analytics life cycle; Preparing data; Preparing BI Server to work with Hive; Executing and monitoring a Hive MapReduce job; Pentaho Reporting; Data visualization and dashboard building; Creating a layout using a predefined template; Creating a data source; Creating a component; Summary; Chapter 5:Visualization of Big Data; Data visualization; Data source preparation; Repopulating the nyse_stocks Hive table; Pentaho's data source integration; Consuming PDI as a CDA data source; Visualizing data using CTools.
  • Visualizing trends using a line chartInteractivity using a parameter; Multiple pie charts; Waterfall chart; CSS styling; Summary; Appendix A:Big Data Set; Freebase; U.S. airline on-time performance; Amazon public data sets; Appendix B:Hadoop Setup; Hortonworks Sandbox; Setting up the Hortonworks Sandbox; Hortonworks Sandbox web administration; Transferring a file using secure FTP; Preparing Hive data; The nyse_stocks sample data; Index.