Cargando…

Tubular Combustion.

Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ishizuka, Satoru
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Momentum Press, 2013.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction / Satoru Ishizuka
  • 1.1 Background of tubular flame studies
  • 1.1.1 Aerodynamic straining
  • 1.1.2 Flame curvature
  • 1.1.3 Rotation
  • 1.1.4 Tubular flames
  • 1.2 Notable tubular flame characteristics
  • 1.2.1 Thermal advantage
  • 1.2.2 Aerodynamic advantage
  • 1.2.3 Lewis number effects
  • 1.3 Tubular flame studies
  • 1.3.1 Theoretical studies
  • 1.3.2 Computational simulations
  • 1.3.3 Experimental studies
  • 1.4 Relevant studies
  • 1.4.1 Tubular non-premixed, diffusion flame studies
  • 1.4.2 Miniature liquid-film combustors
  • 1.5 Practical application
  • 1.5.1 Prototype tubular flame burners
  • 1.5.2 Rapidly mixed tubular flame combustion
  • References.
  • 2. Theory of tubular flames / Tadao Takeno and Makihito Nishioka
  • 2.1 Introduction
  • 2.2 Theoretical formulation
  • 2.2.1 Model and assumptions
  • 2.2.2 Fundamental equations
  • 2.3 Similarity solution
  • 2.3.1 Introduction
  • 2.3.2 Equations to be solved
  • 2.4 Simplified model with one-step kinetics and simple transport properties
  • 2.4.1 Formulation
  • 2.4.2 Nondimensional system
  • 2.4.3 Incompressible flow system
  • 2.4.4 Flow field
  • 2.4.5 Concentration and temperature field
  • 2.4.6 Simplification for Le = 1
  • 2.4.7 Results for simplified model
  • 2.4.8 Discussions on results for simplified model
  • 2.5 Effects of variable density
  • 2.5.1 Model and assumptions
  • 2.5.2 Comparison with incompressible solutions
  • 2.5.3 Effects of injection velocity
  • 2.5.4 Effects of lewis number
  • 2.5.5 Discussions on the effects of variable density
  • 2.6 Asymptotic analysis
  • 2.6.1 Model and assumptions
  • 2.6.2 Nondimensional system
  • 2.6.3 Asymptotic analysis
  • 2.6.4 Approximate solutions
  • 2.6.5 Response curves
  • 2.6.6 Extinction conditions
  • 2.6.7 Numerical example
  • 2.6.8 Discussions
  • 2.6.9 Some concluding remarks
  • 2.7 Numerical study with full kinetics and exact transport properties
  • 2.7.1 Introduction
  • 2.7.2 Model and equations
  • 2.7.3 Reaction mechanism and transport properties
  • 2.7.4 Results and discussions
  • 2.7.5 Concluding remarks
  • 2.8 Final conclusions
  • References.
  • 3. Mathematical formulation and computational simulation of tubular flames / Yuyin Zhang, Huayang Zhu, Robert J. Kee
  • 3.1 Introduction
  • 3.2 Literature overview
  • 3.3 Mathematical formulation
  • 3.3.1 Similarity form
  • 3.3.2 Radial injection
  • 3.3.3 Tangential injection
  • 3.3.4 Practical considerations
  • 3.3.5 Computational procedure
  • 3.4 Model validation
  • 3.4.1 Tubular flame with a radial inlet flow
  • 3.4.2 Swirling tubular flame with a single inlet slot
  • 3.5 Flame structure and pressure diffusion
  • 3.5.1 Premixed propane-air flames
  • 3.5.2 Premixed methane-air flames
  • 3.5.3 Summary of pressure diffusion
  • 3.6 Potential technology applications
  • 3.7 Summary and conclusions
  • References.
  • 4. Raman spectroscopic measurements of tubular flames / Robert W. Pitz
  • 4.1 Introduction
  • 4.2 Raman scattering technique
  • 4.3 Tubular flame burner
  • 4.4 Raman scattering measurements in tubular flames
  • 4.4.1 Hydrogen-air tubular flames
  • 4.4.2 Methane-air tubular flames
  • 4.4.3 Propane-air tubular flames
  • 4.5 Cellular tubular flames
  • 4.5.1 Instabilities in tubular flames
  • 4.5.2 Raman scattering measurements in cellular tubular flames
  • References.
  • 5. Non-premixed tubular flames / Robert W. Pitz
  • 5.1 Introduction
  • 5.2 Numerical study of the non-premixed tubular flames
  • 5.3 Non-premixed opposed-flow tubular burner
  • 5.4 Raman scattering measurements in non-premixed tubular flames
  • 5.4.1 Hydrogen/air non-premixed tubular flames
  • 5.4.2 Hydrocarbon-air non-premixed tubular flames
  • 5.5 Cellular instabilities in non-premixed tubular flames
  • 5.5.1 Cellular instabilities in diffusion flames
  • 5.5.2 Cellular formation and extinction in non-premixed tubular flames
  • References.
  • 6. Tubular flame characteristics of miniature liquid film combustors / Derek Dunn-Rankin
  • 6.1 Introduction
  • 6.2 Brief review of some key features of a tubular flame
  • 6.3 Review of the key features of a fuel film combustor flame
  • 6.4 Examples of tubular flame behaviors in a fuel film combustor
  • 6.4.1 Original design
  • 6.4.2 Secondary air injection
  • 6.4.3 Swirler design and tubular flame
  • 6.5 Concluding remarks
  • References.
  • 7. Small-scale applications / Daisuke Shimokuri
  • 7.1. Introduction
  • 7.2. Flame quenching in a narrow channel
  • 7.2.1 Flame quenching in a nonrotating flow field
  • 7.2.2 Advantages using small-scale tubular flame burners
  • 7.2.3 Tubular flame in a small-diameter tube
  • 7.2.4 Effects of tube size on the tubular flame
  • 7.2.5 Critical tube diameter for a rotating flow field
  • 7.3 Development of small power sources using a tubular flame
  • References.
  • 8. Large-scale applications / Satoru Ishizuka
  • 8.1 Introduction
  • 8.1.1 Classification
  • 8.1.2 Flame diameter and length
  • 8.1.3 Rapidly mixed tubular flame combustion
  • 8.2 Wide flammable range
  • 8.2.1 BFG burners
  • 8.3 Fuel diversity
  • 8.3.1 Gaseous fuels
  • 8.3.2 Liquid fuels
  • 8.3.3 Solid fuels
  • 8.4 Compactness
  • 8.4.1 Fuel-processing system for polymer electrolyte fuel cell
  • 8.4.2 Hollow fastening bolt
  • 8.4.3 Superheated steam generator
  • 8.5 Geometry
  • 8.5.1 Flame stabilization
  • 8.5.2 Heating process
  • 8.5.3 Stirling engine
  • References
  • Index.