Tubular Combustion.
Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still m...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Momentum Press,
2013.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction / Satoru Ishizuka
- 1.1 Background of tubular flame studies
- 1.1.1 Aerodynamic straining
- 1.1.2 Flame curvature
- 1.1.3 Rotation
- 1.1.4 Tubular flames
- 1.2 Notable tubular flame characteristics
- 1.2.1 Thermal advantage
- 1.2.2 Aerodynamic advantage
- 1.2.3 Lewis number effects
- 1.3 Tubular flame studies
- 1.3.1 Theoretical studies
- 1.3.2 Computational simulations
- 1.3.3 Experimental studies
- 1.4 Relevant studies
- 1.4.1 Tubular non-premixed, diffusion flame studies
- 1.4.2 Miniature liquid-film combustors
- 1.5 Practical application
- 1.5.1 Prototype tubular flame burners
- 1.5.2 Rapidly mixed tubular flame combustion
- References.
- 2. Theory of tubular flames / Tadao Takeno and Makihito Nishioka
- 2.1 Introduction
- 2.2 Theoretical formulation
- 2.2.1 Model and assumptions
- 2.2.2 Fundamental equations
- 2.3 Similarity solution
- 2.3.1 Introduction
- 2.3.2 Equations to be solved
- 2.4 Simplified model with one-step kinetics and simple transport properties
- 2.4.1 Formulation
- 2.4.2 Nondimensional system
- 2.4.3 Incompressible flow system
- 2.4.4 Flow field
- 2.4.5 Concentration and temperature field
- 2.4.6 Simplification for Le = 1
- 2.4.7 Results for simplified model
- 2.4.8 Discussions on results for simplified model
- 2.5 Effects of variable density
- 2.5.1 Model and assumptions
- 2.5.2 Comparison with incompressible solutions
- 2.5.3 Effects of injection velocity
- 2.5.4 Effects of lewis number
- 2.5.5 Discussions on the effects of variable density
- 2.6 Asymptotic analysis
- 2.6.1 Model and assumptions
- 2.6.2 Nondimensional system
- 2.6.3 Asymptotic analysis
- 2.6.4 Approximate solutions
- 2.6.5 Response curves
- 2.6.6 Extinction conditions
- 2.6.7 Numerical example
- 2.6.8 Discussions
- 2.6.9 Some concluding remarks
- 2.7 Numerical study with full kinetics and exact transport properties
- 2.7.1 Introduction
- 2.7.2 Model and equations
- 2.7.3 Reaction mechanism and transport properties
- 2.7.4 Results and discussions
- 2.7.5 Concluding remarks
- 2.8 Final conclusions
- References.
- 3. Mathematical formulation and computational simulation of tubular flames / Yuyin Zhang, Huayang Zhu, Robert J. Kee
- 3.1 Introduction
- 3.2 Literature overview
- 3.3 Mathematical formulation
- 3.3.1 Similarity form
- 3.3.2 Radial injection
- 3.3.3 Tangential injection
- 3.3.4 Practical considerations
- 3.3.5 Computational procedure
- 3.4 Model validation
- 3.4.1 Tubular flame with a radial inlet flow
- 3.4.2 Swirling tubular flame with a single inlet slot
- 3.5 Flame structure and pressure diffusion
- 3.5.1 Premixed propane-air flames
- 3.5.2 Premixed methane-air flames
- 3.5.3 Summary of pressure diffusion
- 3.6 Potential technology applications
- 3.7 Summary and conclusions
- References.
- 4. Raman spectroscopic measurements of tubular flames / Robert W. Pitz
- 4.1 Introduction
- 4.2 Raman scattering technique
- 4.3 Tubular flame burner
- 4.4 Raman scattering measurements in tubular flames
- 4.4.1 Hydrogen-air tubular flames
- 4.4.2 Methane-air tubular flames
- 4.4.3 Propane-air tubular flames
- 4.5 Cellular tubular flames
- 4.5.1 Instabilities in tubular flames
- 4.5.2 Raman scattering measurements in cellular tubular flames
- References.
- 5. Non-premixed tubular flames / Robert W. Pitz
- 5.1 Introduction
- 5.2 Numerical study of the non-premixed tubular flames
- 5.3 Non-premixed opposed-flow tubular burner
- 5.4 Raman scattering measurements in non-premixed tubular flames
- 5.4.1 Hydrogen/air non-premixed tubular flames
- 5.4.2 Hydrocarbon-air non-premixed tubular flames
- 5.5 Cellular instabilities in non-premixed tubular flames
- 5.5.1 Cellular instabilities in diffusion flames
- 5.5.2 Cellular formation and extinction in non-premixed tubular flames
- References.
- 6. Tubular flame characteristics of miniature liquid film combustors / Derek Dunn-Rankin
- 6.1 Introduction
- 6.2 Brief review of some key features of a tubular flame
- 6.3 Review of the key features of a fuel film combustor flame
- 6.4 Examples of tubular flame behaviors in a fuel film combustor
- 6.4.1 Original design
- 6.4.2 Secondary air injection
- 6.4.3 Swirler design and tubular flame
- 6.5 Concluding remarks
- References.
- 7. Small-scale applications / Daisuke Shimokuri
- 7.1. Introduction
- 7.2. Flame quenching in a narrow channel
- 7.2.1 Flame quenching in a nonrotating flow field
- 7.2.2 Advantages using small-scale tubular flame burners
- 7.2.3 Tubular flame in a small-diameter tube
- 7.2.4 Effects of tube size on the tubular flame
- 7.2.5 Critical tube diameter for a rotating flow field
- 7.3 Development of small power sources using a tubular flame
- References.
- 8. Large-scale applications / Satoru Ishizuka
- 8.1 Introduction
- 8.1.1 Classification
- 8.1.2 Flame diameter and length
- 8.1.3 Rapidly mixed tubular flame combustion
- 8.2 Wide flammable range
- 8.2.1 BFG burners
- 8.3 Fuel diversity
- 8.3.1 Gaseous fuels
- 8.3.2 Liquid fuels
- 8.3.3 Solid fuels
- 8.4 Compactness
- 8.4.1 Fuel-processing system for polymer electrolyte fuel cell
- 8.4.2 Hollow fastening bolt
- 8.4.3 Superheated steam generator
- 8.5 Geometry
- 8.5.1 Flame stabilization
- 8.5.2 Heating process
- 8.5.3 Stirling engine
- References
- Index.