Cargando…

Tubular Combustion.

Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ishizuka, Satoru
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Momentum Press, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000007a 4500
001 EBSCO_ocn863034782
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 131115s2013 xx ob 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d MHW  |d EBLCP  |d NYMPP  |d OCLCO  |d E7B  |d UMI  |d UKMGB  |d OCLCQ  |d N$T  |d DEBBG  |d DEBSZ  |d YDXCP  |d OCLCQ  |d OCLCF  |d COO  |d OCLCQ  |d AGLDB  |d VGM  |d OTZ  |d OCLCQ  |d MERUC  |d OCLCQ  |d UPM  |d MERER  |d OCLCQ  |d STF  |d VTS  |d OCLCQ  |d AU@  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 016469294  |2 Uk 
019 |a 868085278 
020 |a 1306124549  |q (electronic bk.) 
020 |a 9781306124546  |q (electronic bk.) 
020 |a 9781606503058  |q (electronic bk.) 
020 |a 1606503057  |q (electronic bk.) 
020 |a 1606503030 
020 |a 9781606503034 
020 |z 9781606503034 
024 7 |a 10.5643/9781606503058  |2 doi 
029 1 |a DEBBG  |b BV043777416 
029 1 |a DEBSZ  |b 404329772 
029 1 |a DEBSZ  |b 405509812 
029 1 |a DEBSZ  |b 472803913 
029 1 |a NZ1  |b 16077709 
035 |a (OCoLC)863034782  |z (OCoLC)868085278 
037 |a 543705  |b MIL 
050 4 |a QA276.8 
072 7 |a NAT  |x 015000  |2 bisacsh 
082 0 4 |a 567 
049 |a UAMI 
100 1 |a Ishizuka, Satoru. 
245 1 0 |a Tubular Combustion. 
260 |b Momentum Press,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion- 
505 0 |a 1. Introduction / Satoru Ishizuka -- 1.1 Background of tubular flame studies -- 1.1.1 Aerodynamic straining -- 1.1.2 Flame curvature -- 1.1.3 Rotation -- 1.1.4 Tubular flames -- 1.2 Notable tubular flame characteristics -- 1.2.1 Thermal advantage -- 1.2.2 Aerodynamic advantage -- 1.2.3 Lewis number effects -- 1.3 Tubular flame studies -- 1.3.1 Theoretical studies -- 1.3.2 Computational simulations -- 1.3.3 Experimental studies -- 1.4 Relevant studies -- 1.4.1 Tubular non-premixed, diffusion flame studies -- 1.4.2 Miniature liquid-film combustors -- 1.5 Practical application -- 1.5.1 Prototype tubular flame burners -- 1.5.2 Rapidly mixed tubular flame combustion -- References. 
505 8 |a 2. Theory of tubular flames / Tadao Takeno and Makihito Nishioka -- 2.1 Introduction -- 2.2 Theoretical formulation -- 2.2.1 Model and assumptions -- 2.2.2 Fundamental equations -- 2.3 Similarity solution -- 2.3.1 Introduction -- 2.3.2 Equations to be solved -- 2.4 Simplified model with one-step kinetics and simple transport properties -- 2.4.1 Formulation -- 2.4.2 Nondimensional system -- 2.4.3 Incompressible flow system -- 2.4.4 Flow field -- 2.4.5 Concentration and temperature field -- 2.4.6 Simplification for Le = 1 -- 2.4.7 Results for simplified model -- 2.4.8 Discussions on results for simplified model -- 2.5 Effects of variable density -- 2.5.1 Model and assumptions -- 2.5.2 Comparison with incompressible solutions -- 2.5.3 Effects of injection velocity -- 2.5.4 Effects of lewis number -- 2.5.5 Discussions on the effects of variable density -- 2.6 Asymptotic analysis -- 2.6.1 Model and assumptions -- 2.6.2 Nondimensional system -- 2.6.3 Asymptotic analysis -- 2.6.4 Approximate solutions -- 2.6.5 Response curves -- 2.6.6 Extinction conditions -- 2.6.7 Numerical example -- 2.6.8 Discussions -- 2.6.9 Some concluding remarks -- 2.7 Numerical study with full kinetics and exact transport properties -- 2.7.1 Introduction -- 2.7.2 Model and equations -- 2.7.3 Reaction mechanism and transport properties -- 2.7.4 Results and discussions -- 2.7.5 Concluding remarks -- 2.8 Final conclusions -- References. 
505 8 |a 3. Mathematical formulation and computational simulation of tubular flames / Yuyin Zhang, Huayang Zhu, Robert J. Kee -- 3.1 Introduction -- 3.2 Literature overview -- 3.3 Mathematical formulation -- 3.3.1 Similarity form -- 3.3.2 Radial injection -- 3.3.3 Tangential injection -- 3.3.4 Practical considerations -- 3.3.5 Computational procedure -- 3.4 Model validation -- 3.4.1 Tubular flame with a radial inlet flow -- 3.4.2 Swirling tubular flame with a single inlet slot -- 3.5 Flame structure and pressure diffusion -- 3.5.1 Premixed propane-air flames -- 3.5.2 Premixed methane-air flames -- 3.5.3 Summary of pressure diffusion -- 3.6 Potential technology applications -- 3.7 Summary and conclusions -- References. 
505 8 |a 4. Raman spectroscopic measurements of tubular flames / Robert W. Pitz -- 4.1 Introduction -- 4.2 Raman scattering technique -- 4.3 Tubular flame burner -- 4.4 Raman scattering measurements in tubular flames -- 4.4.1 Hydrogen-air tubular flames -- 4.4.2 Methane-air tubular flames -- 4.4.3 Propane-air tubular flames -- 4.5 Cellular tubular flames -- 4.5.1 Instabilities in tubular flames -- 4.5.2 Raman scattering measurements in cellular tubular flames -- References. 
505 8 |a 5. Non-premixed tubular flames / Robert W. Pitz -- 5.1 Introduction -- 5.2 Numerical study of the non-premixed tubular flames -- 5.3 Non-premixed opposed-flow tubular burner -- 5.4 Raman scattering measurements in non-premixed tubular flames -- 5.4.1 Hydrogen/air non-premixed tubular flames -- 5.4.2 Hydrocarbon-air non-premixed tubular flames -- 5.5 Cellular instabilities in non-premixed tubular flames -- 5.5.1 Cellular instabilities in diffusion flames -- 5.5.2 Cellular formation and extinction in non-premixed tubular flames -- References. 
505 8 |a 6. Tubular flame characteristics of miniature liquid film combustors / Derek Dunn-Rankin -- 6.1 Introduction -- 6.2 Brief review of some key features of a tubular flame -- 6.3 Review of the key features of a fuel film combustor flame -- 6.4 Examples of tubular flame behaviors in a fuel film combustor -- 6.4.1 Original design -- 6.4.2 Secondary air injection -- 6.4.3 Swirler design and tubular flame -- 6.5 Concluding remarks -- References. 
505 8 |a 7. Small-scale applications / Daisuke Shimokuri -- 7.1. Introduction -- 7.2. Flame quenching in a narrow channel -- 7.2.1 Flame quenching in a nonrotating flow field -- 7.2.2 Advantages using small-scale tubular flame burners -- 7.2.3 Tubular flame in a small-diameter tube -- 7.2.4 Effects of tube size on the tubular flame -- 7.2.5 Critical tube diameter for a rotating flow field -- 7.3 Development of small power sources using a tubular flame -- References. 
505 8 |a 8. Large-scale applications / Satoru Ishizuka -- 8.1 Introduction -- 8.1.1 Classification -- 8.1.2 Flame diameter and length -- 8.1.3 Rapidly mixed tubular flame combustion -- 8.2 Wide flammable range -- 8.2.1 BFG burners -- 8.3 Fuel diversity -- 8.3.1 Gaseous fuels -- 8.3.2 Liquid fuels -- 8.3.3 Solid fuels -- 8.4 Compactness -- 8.4.1 Fuel-processing system for polymer electrolyte fuel cell -- 8.4.2 Hollow fastening bolt -- 8.4.3 Superheated steam generator -- 8.5 Geometry -- 8.5.1 Flame stabilization -- 8.5.2 Heating process -- 8.5.3 Stirling engine -- References -- Index. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Tubes  |x Thermodynamics. 
650 0 |a Combustion. 
650 6 |a Combustion. 
650 7 |a combustion.  |2 aat 
650 7 |a NATURE  |x Fossils.  |2 bisacsh 
650 7 |a Combustion  |2 fast 
650 7 |a Tubes  |x Thermodynamics  |2 fast 
653 |a Tubular flame 
653 |a cylindrical flame 
653 |a axisymmetric flame 
653 |a flame sheet 
653 |a flame stretch 
653 |a flame curvature 
653 |a vortex 
653 |a swirl 
653 |a Lewis number 
653 |a similar solution 
653 |a asymptotic analysis 
653 |a computational simulation 
653 |a pressure diffusion 
653 |a Raman spectroscopy 
653 |a tubular flame structure 
653 |a cellular instability 
653 |a rapidly-mixed combustion 
653 |a non-premixed combustion 
653 |a liquid film combustor 
653 |a microcombustor 
653 |a tubular flame burners 
776 0 8 |i Print version:  |z 9781306124546 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=659687  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28326398 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1048448 
938 |a ebrary  |b EBRY  |n ebr10810847 
938 |a EBSCOhost  |b EBSC  |n 659687 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26712309 
938 |a Momentum Press  |b NYMP  |n 9781606503058 
938 |a YBP Library Services  |b YANK  |n 11334120 
994 |a 92  |b IZTAP