Cargando…

Chaos, dynamics, and fractals : an algorithmic approach to deterministic chaos /

This book develops deterministic chaos and fractals from the standpoint of iterated maps, but the emphasis makes it very different from all other books in the field. It provides the reader with an introduction to more recent developments, such as weak universality, multifractals, and shadowing, as w...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: McCauley, Joseph L. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York, NY : Cambridge University Press, 1993.
Colección:Cambridge nonlinear science series ; 2.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn862168057
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 131106s1993 enka ob 001 0 eng d
040 |a CAMBR  |b eng  |e rda  |e pn  |c CAMBR  |d N$T  |d UMI  |d OCLCO  |d DEBBG  |d DEBSZ  |d YDXCP  |d EBLCP  |d EUX  |d OCLCF  |d LLB  |d OCLCQ  |d COO  |d AGLDB  |d OCLCQ  |d OCLCO  |d UAB  |d OCLCQ  |d VTS  |d CEF  |d WYU  |d REC  |d STF  |d AU@  |d OCLCO  |d M8D  |d UKAHL  |d OCLCQ  |d AJS  |d MHW  |d OCLCO  |d SFB  |d OCLCQ  |d OCLCO  |d TXE  |d OCLCQ 
019 |a 866449656  |a 871332855  |a 878966336  |a 1066449495 
020 |a 9780511564154  |q (electronic bk.) 
020 |a 0511564155  |q (electronic bk.) 
020 |a 9781461951742  |q (electronic bk.) 
020 |a 1461951747  |q (electronic bk.) 
020 |a 9781107390157 
020 |a 110739015X 
020 |a 0521467470  |q (pbk.) 
020 |a 9780521467476  |q (pbk.) 
020 |a 9781107387300  |q (e-book) 
020 |a 1107387302  |q (e-book) 
020 |z 0521416582 
020 |z 9780521416580 
020 |z 9780521467476 
029 1 |a DEBBG  |b BV042031706 
029 1 |a DEBBG  |b BV043035074 
029 1 |a DEBSZ  |b 399366490 
029 1 |a DEBSZ  |b 414171632 
029 1 |a DEBSZ  |b 421245093 
029 1 |a GBVCP  |b 805088156 
035 |a (OCoLC)862168057  |z (OCoLC)866449656  |z (OCoLC)871332855  |z (OCoLC)878966336  |z (OCoLC)1066449495 
037 |a CL0500000420  |b Safari Books Online 
050 4 |a QC174.17.C45  |b M33 1993eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515  |2 22 
084 |a 30.20  |2 bcl 
084 |a *58-01  |2 msc 
084 |a 37B99  |2 msc 
084 |a 37D45  |2 msc 
084 |a 76F20  |2 msc 
084 |a 82-01  |2 msc 
084 |a UG 3900  |2 rvk 
084 |a MAT 587f  |2 stub 
084 |a MAT 519f  |2 stub 
049 |a UAMI 
100 1 |a McCauley, Joseph L.,  |e author. 
245 1 0 |a Chaos, dynamics, and fractals :  |b an algorithmic approach to deterministic chaos /  |c Joseph L. McCauley. 
264 1 |a Cambridge ;  |a New York, NY :  |b Cambridge University Press,  |c 1993. 
300 |a 1 online resource (xxi, 323 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge nonlinear science series ;  |v 2 
504 |a Includes bibliographical references (pages 309-317) and index. 
588 0 |a Print version record. 
520 |a This book develops deterministic chaos and fractals from the standpoint of iterated maps, but the emphasis makes it very different from all other books in the field. It provides the reader with an introduction to more recent developments, such as weak universality, multifractals, and shadowing, as well as to older subjects like universal critical exponents, devil's staircases and the Farey tree. The author uses a fully discrete method, a 'theoretical computer arithmetic', because finite (but not fixed) precision cannot be avoided in computation or experiment. This leads to a more general formulation in terms of symbolic dynamics and to the idea of weak universality. The connection is made with Turing's ideas of computable numbers and it is explained why the continuum approach leads to predictions that are not necessarily realized in computation or in nature, whereas the discrete approach yields all possible histograms that can be observed or computed. 
505 0 |a Cover; Half Title; Title Page; Copyright; Dedication; Contents; Preface; Introduction; 1 Flows in phase space; 1.1 Determinism, phase flows, and Liouville's theorem; 1.2 Equilibria, linear stability, and limit cycles; 1.3 Change of stability (bifurcations); 1.4 Periodically driven systems and stroboscopic maps; 1.5 Continuous groups of transformations as phase space flows; 2 Introduction to deterministic chaos; 2.1 The Lorenz model, the Lorenz plot, and the binary tent map; 2.2 Local exponential instability of nearby orbits: the positiveLiapunov exponent 
505 8 |a 2.3 The Frobenius-Peron equation (invariant densities)2.4 Simple examples of fully developed chaos for maps of theinterval; 2.5 Maps that are conjugate under differentiable coordinatetransformations; 2.6 Computation of nonperiodic chaotic orbits at fullydeveloped chaos; 2.7 Is the idea of randomness necessary in natural science?; 3 Conservative dynamical systems; 3.1 Integrable conservative systems: symmetry, invariance, conservation laws, and motion on invariant tori in phase space; 3.2 The Hénon-Heiles model: evidence for bifurcations from integrable to chaotic behavior 
505 8 |a 3.3 Perturbed twist maps: nearly integrable conservativesystems3.4 Mixing and ergodicity: the approach to statisticalequilibrium; 3.5 The bakers' transformation; 3.6 Computation of chaotic orbits for an area-preserving map; Appendix 3.A Generating functions for canonicaltransformations; Appendix 3.B Systems in involution; 4 Fractals and fragmentation in phase space; 4.1 Introduction to fractals; 4.2 Geometrically selfsimilar fractals; 4.3 The dissipative bakers' transformation: a model 'strange' attractor; 4.4 The symmetric tent map: a model 'strange' repeller 
505 8 |a 4.5 The devil's staircase: arithmetic on the Cantor set4.6 Generalized dimensions and the coarsegraining of phasespace; 4.7 Computation of chaotic orbits on a fractal; 5 The way to chaos by instability of quasiperiodic orbits; 5.1 From limit cycles to tori to chaos; 5.2 Periodically driven systems and circle maps; 5.3 Arnol'd tongues and the devil's staircase; 5.4 Scaling laws and renormalization group equations; 5.5 The Farey tree; 6 The way to chaos by period doubling; 6.1 Universality at transitions to chaos; 6.2 Instability of periodic orbits by period doubling 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Deterministic chaos. 
650 0 |a Algorithms. 
650 0 |a Mappings (Mathematics) 
650 0 |a Fractals. 
650 0 |a Mathematical physics. 
650 2 |a Algorithms 
650 6 |a Chaos déterministe. 
650 6 |a Algorithmes. 
650 6 |a Applications (Mathématiques) 
650 6 |a Fractales. 
650 6 |a Physique mathématique. 
650 7 |a algorithms.  |2 aat 
650 7 |a fractals.  |2 aat 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Algorithms.  |2 fast  |0 (OCoLC)fst00805020 
650 7 |a Deterministic chaos.  |2 fast  |0 (OCoLC)fst00891657 
650 7 |a Fractals.  |2 fast  |0 (OCoLC)fst00933507 
650 7 |a Mappings (Mathematics)  |2 fast  |0 (OCoLC)fst01008724 
650 7 |a Mathematical physics.  |2 fast  |0 (OCoLC)fst01012104 
650 7 |a Chaostheorie  |2 gnd 
650 7 |a Fraktal  |2 gnd 
650 7 |a Chaos, (théorie des systèmes)  |2 ram 
650 7 |a Algorithmes.  |2 ram 
650 7 |a Fractales.  |2 ram 
650 0 7 |a Chaostheorie.  |2 swd 
650 0 7 |a Fraktal.  |2 swd 
776 0 8 |i Print version:  |a McCauley, Joseph L.  |t Chaos, dynamics, and fractals  |z 0521416582  |w (DLC) 93120880  |w (OCoLC)30158051 
830 0 |a Cambridge nonlinear science series ;  |v 2. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=616945  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385063 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1582574 
938 |a EBSCOhost  |b EBSC  |n 616945 
938 |a YBP Library Services  |b YANK  |n 11354196 
938 |a YBP Library Services  |b YANK  |n 11367751 
938 |a YBP Library Services  |b YANK  |n 11440493 
938 |a YBP Library Services  |b YANK  |n 11227868 
994 |a 92  |b IZTAP