Cargando…

Ocean Circulation and Climate : a 21st Century Perspective /

This book provides a summary of the state of the science relating to the role of the oceans in the physical climate system. It is structured to guide the reader through the analysis, interpretation, modeling, and synthesis of ocean climate phenomena.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Siedler, Gerold (Editor ), Griffies, Stephen M., 1962- (Editor ), Gould, W. John (William John), 1942- (Editor ), Church, John, 1951- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Academic Press, 2013.
Edición:Second edition.
Colección:International geophysics series ; 103.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: pt. I The Ocean's Role in the Climate System
  • 1. The Ocean as a Component of the Climate System / Thomas F. Stocker
  • 1. Setting the Scene
  • 2. The Ocean as an Exchanging Earth System Reservoir
  • 3. Atmosphere-Ocean Fluxes and Meridional Transports
  • 4. Global-Scale Surface and Deep Ocean Circulations
  • 5. Large-Scale Modes of Variability Involving the Ocean
  • 6. The Ocean's Role in Past Climate Change
  • 7. The Ocean in the Anthropocene
  • 8. Concluding Thoughts
  • Acknowledgments
  • References
  • 2. Paleoclimatic Ocean Circulation and Sea-Level Changes / Georg Feulner
  • 1. Introduction
  • 2. Reconstructing Past Ocean States
  • 2.1. Proxies for Past Ocean Circulation
  • 2.2. Past Sea-Level Proxies
  • 2.3. Models
  • 3. The Oceans in the Quaternary
  • 3.1. The Last Glacial Maximum
  • 3.2. Abrupt Glacial Climate Changes
  • 3.3. Glacial Cycles
  • 3.4. Interglacial Climates
  • 4. The Deeper Past
  • 4.1. Challenges of Deep-Time Paleoceanography
  • 4.2. The Oceans During the Mid-Cretaceous Warm Period
  • 5. Outlook
  • Acknowledgments
  • References
  • pt. II Ocean Observations
  • 3. In Situ Ocean Observations: A Brief History Present Status, and Future Directions / Martin Visbeck
  • 1. Introduction
  • 2. Development of Present Observational Capability
  • 2.1. Late Nineteenth to Mid-Twentieth Centuries
  • 2.2. Second Half of Twentieth Century
  • 2.3. Twenty-First Century: Consolidation of Capabilities and Growth of Sustained Observations
  • 3. Emerging and Specialized Ocean Observing Technologies
  • 3.1. Advanced Observing Platforms
  • 3.2. Specialized Observing Systems and Technologies
  • 3.3. New Sensors
  • 4. Changes in Data Volume and Coverage and Implication for Synthesis Products
  • 5. The Future: Outstanding Issues and a New Framework for Global Ocean Observing
  • 5.1. Building on Ocean Obs '09
  • 6. Conclusions
  • References
  • 4. Remote Sensing of the Global Ocean Circulation / Rosemary Morrow
  • 1. Introduction
  • 2. Ocean General Circulation
  • 3. Variability of the Large-Scale Ocean Circulation
  • 3.1. Sea Surface Height
  • 3.2. Ocean Mass and Bottom Pressure
  • 3.3. Global Mean Sea-Level Change
  • 3.4. Forcing by the Atmosphere and Air-Sea Interaction
  • 4. Mesoscale Eddies and Fronts
  • 4.1. Mapping the Eddy Field
  • 4.2. Wave Number Spectra and the Ocean Energy Cascade
  • 4.3. Seasonal and Interannual Variations in Eddy Energy
  • 4.4. Tracking Individual Eddies
  • 4.5. Surface Currents from Multisensor Mapping
  • 4.6. Eddy Fluxes of Ocean Properties
  • 4.7. Submesoscale Dynamics
  • 4.8. Eddies and Biogeochemical Processes
  • 5. Summary and Outlook
  • Acknowledgments
  • References
  • pt. III Ocean Processes
  • 5. Exchanges Through the Ocean Surface / Lisan Yu
  • 1. Introduction
  • 2. Air-Sea Exchange Formulae and Climatological Fields
  • 2.1. Air-Sea Exchange Formulae
  • 2.2. Climatological Fields
  • 3. Measurement Techniques and Review of Datasets
  • 3.1. Flux Measurement and Estimation Techniques
  • 3.2. Flux Datasets: Overview of Recent Products
  • 3.3. Flux Datasets: Evaluation Techniques
  • 4. Variability and Extremes
  • 4.1. Impacts of Large-Scale Modes of Variability on Surface Fluxes
  • 4.2. Surface Flux Response to Anthropogenic Climate Change
  • 4.3. Transfers Under Extreme Conditions
  • 5. Ocean Impacts
  • 5.1. Impacts on Near-Surface Ocean Layer Properties, Water Mass Transformation
  • 5.2. Impacts of Surface Fluxes on Ocean Circulation
  • 6. Outlook and Conclusions
  • 6.1. Prospects for Improved Flux Datasets
  • 6.2. Prospects for Enhanced Observational Constraints
  • 6.3. Conclusion
  • Acknowledgments
  • References
  • 6. Thermodynamics of Seawater / Rich Pawlowicz
  • 1. Introduction
  • 2. Absolute Salinity Sa and Preformed Salinity S*
  • 2.1. Reference-Composition Salinity SR
  • 2.2. Absolute Salinity SA
  • 2.3. Preformed Salinity S*
  • 3. The Gibbs-Function Approach to Evaluating Thermodynamic Properties
  • 4. The First Law of Thermodynamics and Conservative Temperature
  • 5. The 48-Term Expression for Specific Volume
  • 6. Changes to Oceanographic Practice Under TEOS-10
  • 7. Ocean Modeling Using TEOS-10
  • 8. Summary
  • Acknowledgments
  • References
  • 7. Diapycnal Mixing Processes in the Ocean Interior / Alberto C. Naveira Garabato
  • 1. Introduction
  • 2. Mixing Basics
  • 3. Turbulence in and Below the Surface Mixed Layer
  • 3.1. Langmuir Turbulence
  • 3.2. Inertial Motions
  • 3.3. An Equatorial Example
  • 3.4. Fronts and Other Lateral Processes
  • 4. Mixing in the Ocean Interior
  • 4.1. Internal Wave Breaking
  • 4.2. Mixing in Fracture Zones
  • 4.3. Mesoscale Dissipation as a Source of Turbulent Mixing
  • 4.4. In-Depth Example: Southern Ocean Mixing
  • 5. Discussion
  • 5.1. Finescale Parameterizations of Turbulent Mixing
  • 5.2. Global Values and Patterns
  • 5.3. Representing Patchy Mixing in Large-Scale Models: Progress and Consequences
  • 6. Summary and Future Directions
  • Acknowledgments
  • References
  • 8. Lateral Transport in the Ocean Interior / F.O. Bryan
  • 1. Introduction
  • 2. Theory of Mass, Tracer, and Vector Transport
  • 2.1. Fundamental Equations
  • 2.2. Steady, Conservative Equations
  • 2.3. Reynolds-Averaged Equations
  • 2.4. Diffusion by Continuous Movements
  • 2.5. Sources of Anisotropy in Oceanic Diffusion
  • 2.6. The Veronis Effect
  • 2.7. Streamfunction and Diffusivity
  • 3. Observations and Models of Spatial Variations of Eddy Statistics
  • 4. Mesoscale Isoneutral Diffusivity Variation Parameterizations
  • 4.1. Parameterizations Versus Diagnosed K
  • 4.2. New Parameterization Approaches and Future Developments
  • 5. Conclusions and Remaining Questions
  • Acknowledgment
  • References
  • 9. Global Distribution and Formation of Mode Waters / Gael Forget
  • 1. Mode Water Observations
  • 2. Global Water Mass Census of the Upper Ocean
  • 3. Global Distribution of Mode Water
  • 4. Formation of Mode Water
  • 5. PV Framework
  • 6. Mode Water and Climate
  • 7. Conclusions
  • Acknowledgments
  • References
  • 10. Deepwater Formation / Cecilie Mauritzen
  • 1. Introduction
  • 1.1. Circulation and Distribution of NADW and AABW
  • 1.2. Observed Heat Content Changes in AABW
  • 1.3. Observed Heat Content Changes in Upper and Lower NADW
  • 2. Processes of Deepwater Formation
  • 2.1. Deep Convection: The Example of Formation of Upper North Atlantic Deep Water
  • 2.2. Entrapment: The Example of the Formation of the Lower North Atlantic Deep Water
  • 2.3. Shelf and Under-Ice Processes: The Example of Formation of AABW
  • 3. Interannual and Decadal Variability in Properties, Formation Rate, and Circulation
  • 3.1. Labrador Sea Water: Variability in Properties and Formation Rate
  • 3.2. Greenland-Scotland Ridge Overflow Water: Variability in Properties and Overflow Rate
  • 3.3. Relationship Between Formation Rates of NADW and Changes in the AMOC
  • 3.4. Antarctic Bottom Water: Variability in Properties and Formation Rate
  • 4. Conclusions and Outlook
  • References
  • pt. IV Ocean Circulation and Water Masses
  • 11. Conceptual Models of the Wind-Driven and Thermohaline Circulation / Henk A. Dijkstra
  • 1. Introduction
  • 2. Wind-Driven Circulation
  • 2.1. Ekman Layer and Ekman Overturning Cells
  • 2.2. Sverdrup Balance
  • 2.3. Western Boundary Currents and Inertial Recirculation
  • 2.4. Vertical Structure of the Wind-Driven Circulation
  • 2.5. Role of Bottom Topography
  • 3. Thermohaline Circulation
  • 3.1. Energetics and Global Perspective
  • 3.2. Role of the Southern Ocean and Relation to the Antarctic Circumpolar Current
  • 3.3. Water Mass Formation
  • 3.4. Three-Dimensional Structure of the THC
  • 3.5. Feedbacks and Multiple Equilibria
  • 3.6. Does the South Atlantic Determine the Stability of the THC?
  • 4. Transient Behaviour of the Wind-Driven and Thermohaline Circulation
  • 5. Discussion and Perspective
  • Acknowledgments
  • References
  • 12. Ocean Surface Circulation / Luca Centurioni
  • 1. Observed Near-Surface Currents
  • 1.1. Global Drifter Program and History of Lagrangian Observations
  • 1.2. Mean Surface Circulation
  • 2. Geostrophic Surface Circulation
  • 2.1. High-Resolution Mean Dynamic Topography
  • 2.2. Striated Patterns
  • 2.3. Variability and Trends
  • 3. Ageostrophic Currents
  • 3.1. Motion Driven by Wind
  • 3.2. Centrifugal Effects
  • 3.3. Nonlinear Interactions with Baroclinic Features
  • 4. Regional Surface Ocean Dynamics
  • 4.1. Drifter Studies in the California Current System
  • 4.2. Drifter Studies off Senegal
  • 4.3.
  • Interaction of the Kuroshio with the South China Sea
  • 4.4. Interaction of the Kuroshio with the East China Sea
  • 5. Applications
  • 6. Future Directions
  • Acknowledgments
  • References
  • 13. Western Boundary Currents / Bo Qiu
  • 1. General Features
  • 1.1. Introduction
  • 1.2. Wind-Driven and Thermohaline Circulations
  • 1.3. Transport
  • 1.4. Variability
  • 1.5. Structure of WBCs
  • 1.6. Air-Sea Fluxes
  • 1.7. Observations
  • 1.8. WBCs of Individual Ocean Basins
  • 2. North Atlantic
  • 2.1. Introduction
  • 2.2. Florida Current
  • 2.3. Gulf Stream Separation
  • 2.4. Gulf Stream Extension
  • 2.5. Air-Sea Interaction
  • 2.6. North Atlantic Current
  • 3. South Atlantic
  • 3.1. Introduction
  • 3.2. Brazil Current
  • 3.3. Brazil Current Separation and the Brazil-Malvinas Confluence
  • 3.4. Malvinas Current
  • 3.5. Annual and Interannual Variability
  • 4. Indian Ocean
  • 4.1. Somali Current
  • 4.2. Agulhas Current
  • 5. North Pacific
  • 5.1. Upstream Kuroshio
  • 5.2. Kuroshio South of Japan
  • 5.3. Kuroshio Extension
  • 6. South Pacific
  • 6.1. Upstream EAC
  • 6.2. East Australian Current
  • 6.3. EAC Extension
  • 7. Concluding Remarks
  • 7.1. Separation from the Western Boundary
  • 7.2. Northern and Southern Hemispheres
  • 7.3. Recent and Future Studies
  • Acknowledgments
  • References
  • 14. Currents and Processes along the Eastern Boundaries / Oscar Pizarro
  • 1. Introduction and General Background
  • 1.1. Dominant Processes
  • 1.2. Data and Model Fields
  • 2. Low-Latitude EBCs
  • 2.1. Th
  • Note continued: 3.2. Higher Frequency Mesoscale Variability
  • 4. High-Latitude EBCs
  • 4.1. The Gulf of Alaska Circulation
  • 5. Climate Variability and the Ocean's Eastern Boundaries
  • 5.1. The Dominant Processes
  • 5.2. Climate Modes
  • 5.3. Changes in Processes
  • 5.4. Relating Modes to Models
  • 5.5. Effects of EBCs on Climate
  • 6. Summary
  • Acknowledgments
  • References
  • 15. The Tropical Ocean Circulation and Dynamics / Gilles Reverdin
  • 1. Introduction
  • 2. Tropical Pacific Variability
  • 2.1. Western Pacific Warm Pool
  • 2.2. Climate Variations: ENSO and ENSO Modoki
  • 3. Tropical Atlantic Variability
  • 3.1. MOC and Western Boundary Circulation in the Tropical Atlantic
  • 3.2. Climate Variability
  • 4. Tropical Indian Ocean Variability
  • 4.1. Monsoon Ocean Circulations and Upwelling Regimes
  • 4.2. The IOD
  • 4.3. MJO with Indian Ocean Focus
  • 4.4. IOD, ENSO, and Monsoon Interactions
  • 5. Progresses in Tropical Climate Predictions
  • 6. Outlooks
  • Acknowledgments
  • References
  • 16. The Marine Cryosphere / David M. Holland
  • 1. Introduction
  • 1.1. Marine Cryosphere
  • 1.2. Lce Physics
  • 1.3. Ocean Impacts
  • 1.4. Relation to Other Chapters
  • 2. Sea Ice
  • 2.1. Observations
  • 2.2. Modeling
  • 2.3. Ocean Mixed-Layer Interaction
  • 2.4. Polynyas
  • 2.5. Impact on Water Masses, and Circulation
  • 2.6. Biogeochemical Ramifications
  • 3. Land Ice
  • 3.1. Observations
  • 3.2. Modeling
  • 3.3. Ocean Mixed-Layer Interaction
  • 3.4. Impacts on Water Masses
  • 3.5. Geochemical Tracers
  • 3.6. Sea-Level Change
  • 4. Marine Permafrost
  • 4.1. Pure Ice
  • 4.2. Methane Clathrates
  • 5. Emerging Capabilities
  • 5.1. Ice-Capable Observations
  • 5.2. Ocean-Capable Observations
  • 5.3. Ice-Capable Modeling
  • 6. Cryospheric Change
  • 6.1. Observed Sea-lce Change
  • 6.2. Sea-lce Projections
  • 6.3. Observed Land-lce Change
  • 6.4. Land-lce Projections
  • 6.5. Marine Permafrost
  • 7. Summary
  • References
  • 17. The Arctic and Subarctic Oceans/Seas / John Toole
  • 1. Introduction
  • 1.1. Geography
  • 2. Exchanges with the Subpolar Oceans and Beyond
  • 2.1. Volume Transports
  • 3. Currents and Water Mass Transformations in the Arctic/Subarctic
  • 3.1. The Norwegian Atlantic Current
  • 3.2. Arctic Ocean
  • 3.3. Canadian Archipelago and Baffin Bay
  • 3.4. East Greenland Current
  • 4. Evidence of Long-term Changes in the Arctic/Subarctic
  • 4.1. Introduction
  • 4.2. Evidence for Change in the Arctic Ocean
  • 5. Conclusions
  • Acknowledgments
  • References
  • 18. Dynamics of the Southern Ocean Circulation / Alberto C. Naveira Garabato
  • 1. Introduction
  • 2. Progress in Understanding Southern Ocean Dynamics During WOCE (1990
  • 2002)
  • 3. The Antarctic Circumpolar Current (ACC)
  • 3.1. Structure of the ACC
  • 3.2. Transport of the ACC
  • 3.3. Response of the ACC to Wind and Buoyancy Forcing
  • 4. Southern Ocean Overturning Circulation
  • 4.1. Water Mass Transformations and Southern Ocean Overturning
  • 4.2. Estimates of the Rate of Southern Ocean Overturning
  • 4.3. Residual-Mean Circulation
  • 4.4. Eddy Stirring of PV
  • 5. Southern Ocean Change
  • 5.1. Warming and Freshening of the Southern Ocean
  • 5.2. Changes in the Southern Ocean Inventory of Dissolved Gases
  • 5.3. Changes in Southern Ocean Water Masses
  • 5.4. Ocean-lce Shelf Interaction
  • 5.5. Changes in Southern Ocean Sea Ice
  • 5.6. Causes of Recent Southern Ocean Change
  • 6. Summary and Outstanding Challenges
  • Acknowledgments
  • References
  • 19. Interocean and Interbasin Exchanges / Herle Mercier
  • 1. Introduction
  • 2. Interocean Exchanges at Choke Points
  • 2.1. Drake Passage
  • 2.2. Agulhas System
  • 2.3. Indonesian Throughflow
  • 3. Interbasin Exchanges
  • 3.1. Nordic Seas
  • Atlantic Ocean
  • 3.2. Mediterranean Sea
  • Atlantic Ocean
  • 3.3. Red Sea
  • Indian Ocean
  • 3.4. Okhotsk Sea
  • Pacific Ocean
  • 4. Deep Passages
  • 4.1. Atlantic Ocean: Romanche Fracture Zone, Vema, and Hunter Channels
  • 4.2. Pacific Ocean: Samoan Passage Wake Island Passage
  • 4.3. Indian Ocean: Southwest Indian Ridge Amirante Passage
  • 5. Discussion
  • Acknowledgments
  • References
  • pt. V Modeling the Ocean Climate System
  • 20. Ocean Circulation Models and Modeling / Anne Marie Treguier
  • 1. Scope of this Chapter
  • 2. Physical and Numerical Basis for Ocean Models
  • 2.1. Scales of Motion
  • 2.2. Thermo-Hydrodynamic Equations for a Fluid Parcel
  • 2.3. Approximation Methods
  • 2.4. Thermo-Hydrodynamic Equations for a Finite Region
  • 2.5. Physical Considerations for Transport
  • 2.6. Numerical Considerations for Transport
  • 2.7. Vertical Coordinates
  • 2.8. Unstructured Horizontal Grid Meshes
  • 3. Ocean Modeling: Science Emerging from Simulations
  • 3.1. Design Considerations for Ocean-lce Simulations
  • 3.2. Analysis of Simulations
  • 4. Summary Remarks
  • Acknowledgments
  • References
  • 21. Dynamically and Kinematically Consistent Global Ocean Circulation and lce State Estimates / Patrick Heimbach
  • 1. Introduction
  • 2. Definition
  • 3. Data Assimilation and the Reanalyses
  • 4. Ocean State Estimates
  • 4.1. Basic Notions
  • 4.2. The Observations
  • 5. Global-Scale Solutions
  • 5.1. Summary of Major, Large-Scale Results
  • 5.2. Longer Duration Estimates
  • 5.3. Short-Duration Estimates
  • 5.4. Global High-Resolution Solutions
  • 5.5. Regional Solutions
  • 6. The Uncertainty Problem
  • 7. Discussion
  • Acknowledgments
  • References
  • 22. Methods and Applications of Ocean Synthesis in Climate Research / Shuhei Masuda
  • 1. Introduction
  • 1.1. Definitions
  • 1.2. Ocean Climate Models
  • 1.3. The Global Ocean Observing System
  • 1.4. Ocean Syntheses
  • 2. Methods with a Focus on Developments in the Last Decade
  • 2.1. Sequential Methods
  • 2.2. Smoother Methods
  • 2.3. Improved Procedure for Data Assimilation
  • 3. Applications for Climate Research
  • 3.1. Significant Progress in the Past Decade
  • 3.2. Ocean Circulation
  • 3.3. Upper-Ocean Heat Budget
  • 3.4. Water Mass Pathways
  • 3.5. Initialization for Climate Prediction
  • 4. Assessments of the Impact of New and Future Climate Observing Systems
  • 4.1. Indian Ocean Observing System
  • 4.2. North Atlantic Meridional Overturning
  • 5. Conclusion and Future Challenges
  • 5.1. Coupled Data Assimilation
  • 5.2. High-Resolution Data Assimilation and Climate Research
  • 5.3. Understanding Consistency and Uncertainty
  • Acknowledgments
  • References
  • 23. Coupled Models and Climate Projections / Peter R. Gent
  • 1. Formulation of Coupled Models
  • 2. Flux Adjustments
  • 3. Control Runs
  • 4. Twentieth Century Runs
  • 5. Future Projections
  • 6. North Atlantic Meridional Overturning Circulation
  • 7. El Nino/Southern Oscillation
  • 8. Uses of Climate Models
  • 9. Limitations of Climate Models
  • 10. Cutting Edge Issues
  • Acknowledgments
  • References
  • 24. The Ocean's Role in Modeling and Predicting Seasonal-to-Interannual Climate Variations / Robert Burgman
  • 1. Introduction
  • 2. The Scientific Basis for Seasonal-to-Interannual Prediction
  • 2.1. El Nino and the Southern Oscillation
  • 2.2. Tropical Atlantic Variability
  • 2.3. Tropical Indian Ocean Variability
  • 2.4. Extratropical SST Predictability
  • 3. Development of Seasonal-to-Interannual Prediction Systems
  • 3.1. Historical Review
  • 3.2. Ocean Data Assimilation for Initializing Forecasts and for Assessing Models
  • 3.3. Current Forecast Quality
  • 3.4. Biases and the Need to Improve Models Resolved Eddies
  • 4. Closing Remarks: Challenges for the Future Research
  • Acknowledgments
  • References
  • 25. The Ocean's Role in Modeling and Predicting Decadal Climate Variations / Mojib Latif
  • 1. Introduction
  • 2. Tropical Pacific and Tropical Atlantic Decadal Variability
  • 3. Description of Extratropical Decadal Variability from Observations
  • 3.1. Pacific
  • 3.2. Atlantic
  • 3.3. Southern Ocean Centennial Variability
  • 4. The Stochastic Climate Model: The Null Hypothesis for Climate Variability
  • 4.1. The Zero-Order Stochastic Climate Model
  • 4.2. Hyper Mode
  • 4.3. Stochastic Models with Mean Advection and Spatial Coherence
  • 4.4. Stochastic Wind Stress Forcing of a Dynamical Ocean
  • 4.5. Stochastically Driven AMOC Variability
  • 4.6. Stochastic Coupled Variability Involving the AMOC
  • 4.7. Stochastically Forced Southern Ocean Variability
  • 5. Decadal Predictability
  • 6. Summary and Discussion
  • Acknowledgments
  • References
  • 26. Modeling Ocean Biogeochemical Processes and the Resulting Tracer Distributions / Marion Gehlen
  • 1.
  • Goals of Ocean Biogeochemical Modeling within Climate Research
  • 2. Concepts and Methods of Biogeochemical Ocean Modeling
  • 2.1. Tracer Conservation and Classification of Tracers
  • 2.2. Classification of Models
  • 2.3. Biogeochemical Cycles and Processes Included in BOGCMs
  • 2.4. Links Between the Water Column and Other Reservoirs
  • 2.5. Model Coupling, Model Resolution, and Model Complexity
  • 3. Model Results, Evaluation, Skill, and Limits and Model Data Fusion/Data Assimilation
  • 3.1. Ability of BOGCMs to Match Natural Tracer Distributions to First Order
  • 3.2. Optimization of BOGCMs
  • 4. Major Marine Carbon Modeling Findings of the Recent Decade
  • 4.1. Future Biogeochemical Climate Projections Including Oceanic Carbon Cycle Feedback
  • 4.2. Modeling the Interaction of Ocean Circulation with Greenhouse Gas Fluxes and Biological Production
  • 4.3. Model Assessment and Detection Limits of Ocean Acidification
  • 5. Conclusion
  • Acknowledgments
  • References
  • pt. VI The Changing Ocean
  • 27. Sea-Level and Ocean Heat-Content Change / Elaine R. Miles
  • 1. Introduction
  • 2. Fundamental Concepts of Sea-Level Change
  • 3. Observations of Sea-Level Change
  • 3.1. Sea-Level Change on Multimillenial Time Scales
  • 3.2. Instrumental Observations of Sea-Level Change
  • 3.3. Reconstructions of Global Mean Sea Level
  • 4. Observations of Ocean Heat-Content and Steric Sea-Level Change
  • 4.1. Historical Observations
  • 4.2. Global Ocean Heat-Content and Thermal Expansion Estimates
  • 4.3.
  • Note continued: 6. Prediction and Projections of Future Sea-Level Change
  • 6.1. Interannual Sea-Level Predictions
  • 6.2. Sea-Level Projections
  • 6.3. The Regional Distribution of Sea-Level Change
  • 7. Future Outlook
  • Acknowledgments
  • References
  • 28. Long-term Salinity Changes and Implications for the Global Water Cycle / Tim P. Boyer
  • 1. Introduction
  • 2. Salinity Observations in the Global Oceans
  • 2.1. Measuring Ocean Salinity
  • 2.2. Definitions of Ocean Salinity
  • 3. Observed Salinity Variability
  • 4. Observed Long-Term Changes to Ocean Salinity
  • 4.1. Observed Surface Salinity Changes
  • 4.2. Observed Zonal-Mean SSS Changes
  • 4.3. Observed Subsurface Salinity Changes
  • 4.4. Quantifying Rates of SSS Change
  • 5. Ocean Salinity
  • Relationship to the Global Water Cycle
  • 5.1. Linking Evaporation and Precipitation Fluxes to Salinity
  • 5.2. Idealized Ocean Responses to E-P Forcing Experiments
  • 6. Modeling Ocean Salinity Variability and Change
  • 6.1. Considerations when Analyzing Modeled Salinity
  • 6.2. Modeled Water Cycle Changes Assessed from Ocean Salinity
  • 7. Summary and Outlook
  • Acknowledgments
  • References
  • 29. Ocean Heat Transport / Molly O. Baringer
  • 1. Background
  • 1.1. Energy Balance in the Atmosphere
  • 1.2. Energy Balance at the Ocean Surface
  • 1.3. Heat Transport in the Ocean
  • 2. Calculation of Ocean Heat Transport
  • 2.1. Indirect Ocean Heat Transport Estimation
  • 2.2. Direct Ocean Heat Transport Estimation
  • 3. Observation-Based Estimates of Ocean Heat Transport
  • 3.1. Atlantic
  • 3.2. Indo-Pacific
  • 3.3. Southern Ocean
  • 4. Understanding Mechanisms
  • 4.1. Barotropic-Baroclinic-Horizontal Decomposition (BBH)
  • 4.2. Shallow Subducting Overturn Decomposition (SOV)
  • 5. Ocean Heat Transport Variability
  • 5.1. Repeat Hydrography
  • 5.2. Transition to Timeseries Arrays
  • 5.3. Float Program
  • 5.4. Ships of Opportunity and Expendable Instrumentation
  • 5.5. Summary of Observational Approaches
  • 6. Synthesis and Summary
  • References
  • 30. The Marine Carbon Cycle and Ocean Carbon Inventories / Arne Kortzinger
  • 1. Introduction and Background to the Marine Carbon Cycle
  • 2. History of Observations and Capacity to Collect Marine Carbon Cycle Measurements
  • 2.1. Measurable Parameters of the Seawater CO2-Carbonate System
  • 2.2. History and Coordination of Global-Scale Marine Carbon Cycle Measurements
  • 2.3. Data Synthesis Products and Quality Control Procedures
  • 3. The Anthropogenic Perturbation of the Marine Carbonate System
  • 3.1. Review of Recent Estimates of Global Cant Storage
  • 3.2. Monitoring Decadal Change of DIC and Cant
  • 3.3. Feedbacks and the Non-Steady-State Ocean
  • 4. Ocean Inventories, Storage Rates, and Uptake of CO2 and Cant
  • 4.1. Indian Ocean
  • 4.2. Pacific Ocean
  • 4.3. Atlantic Ocean
  • 4.4. Arctic Ocean
  • 4.5. Marginal Seas
  • 5. Ocean Time-Series Validation of Trends in DIC/pCO2/Cant
  • 6. Conclusion and Outlook
  • Acknowledgments
  • References
  • 31. Marine Ecosystems, Biogeochemistry, and Climate / Scott C. Doney
  • 1. Introduction
  • 2. Phytoplankton, Primary Production, and Climate
  • 3. Climate Impacts on Higher Trophic Levels
  • 4. Ocean Acidification
  • 5. Deoxygenation and Hypoxia
  • 6. Marine Biogeochemical Cycles-Climate Interactions
  • 7. Observational and Research Directions
  • Acknowledgments
  • References.