Cargando…

Stopping times and directed processes /

The notion of 'stopping times' is a useful one in probability theory; it can be applied to both classical problems and fresh ones. This book presents this technique in the context of the directed set, stochastic processes indexed by directed sets, and many applications in probability, anal...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Edgar, Gerald A., 1949-
Otros Autores: Sucheston, Louis
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1992.
Colección:Encyclopedia of mathematics and its applications ; v. 47.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn861692359
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 131029s1992 enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d OCLCO  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d OCLCO  |d COO  |d VTS  |d REC  |d STF  |d M8D  |d OCLCO  |d INARC  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO  |d TXE  |d OCLCQ 
019 |a 715161947  |a 1151333177 
020 |a 9781107087910  |q (electronic bk.) 
020 |a 1107087910  |q (electronic bk.) 
020 |z 0521350239 
020 |z 9780521350235 
029 1 |a DEBBG  |b BV043034631 
029 1 |a DEBSZ  |b 421261986 
029 1 |a GBVCP  |b 805075968 
035 |a (OCoLC)861692359  |z (OCoLC)715161947  |z (OCoLC)1151333177 
050 4 |a QA273.43  |b .E34 1992eb 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2/6  |2 22 
084 |a 31.70  |2 bcl 
084 |a *60G05  |2 msc 
084 |a 60-02  |2 msc 
084 |a 60B05  |2 msc 
084 |a 60G40  |2 msc 
084 |a 60G44  |2 msc 
084 |a 60G60  |2 msc 
084 |a SK 820  |2 rvk 
049 |a UAMI 
100 1 |a Edgar, Gerald A.,  |d 1949- 
245 1 0 |a Stopping times and directed processes /  |c G.A. Edgar and Louis Sucheston. 
264 1 |a Cambridge [England] ;  |a New York, NY, USA :  |b Cambridge University Press,  |c 1992. 
300 |a 1 online resource (xii, 428 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of mathematics and its applications ;  |v volume 47 
504 |a Includes bibliographical references (pages 407-417) and indexes. 
588 0 |a Print version record. 
520 |a The notion of 'stopping times' is a useful one in probability theory; it can be applied to both classical problems and fresh ones. This book presents this technique in the context of the directed set, stochastic processes indexed by directed sets, and many applications in probability, analysis and ergodic theory. Martingales and related processes are considered from several points of view. The book opens with a discussion of pointwise and stochastic convergence of processes, with concise proofs arising from the method of stochastic convergence. Later, the rewording of Vitali covering conditions in terms of stopping times clarifies connections with the theory of stochastic processes. Solutions are presented here for nearly all the open problems in the Krickeberg convergence theory for martingales and submartingales indexed by directed set. Another theme of the book is the unification of martingale and ergodic theorems. 
505 0 |a Cover; Half-title; Title; Copyright; Contents; Preface; 1. Stopping times; 1.1. Definitions; Directed sets; Stochastic basis; Stopping times; Optional stopping; Complements; 1.2. The amart convergence theorem; The lattice property; Convergence; Complements; 1.3. Directed processes and the Radon-Nikodym theorem; Processes indexed by directed sets; Complements; 1.4. Conditional expectations; Definition and basic properties; Martingales and related processes; Riesz decomposition; The sequential case; Complements; 2. Infinite measure and Orlicz spaces; 2.1. Orlicz spaces 
505 8 |a Orlicz functions and their conjugatesOrlicz spaces; Complements; 2.2. More on Orlicz spaces; Comparison of orlicz spaces; Largest and smallest orlicz functions; Duality for orlicz spaces; 2.3. Uniform integrability and conditional expectation; Conditional expectation in infinite measure spaces; Complements; 3. Inequalities; 3.1. The three-function inequality; Complements; 3.2. Sharp maximal inequality for martingale transforms; 3.3. Prophet compared to gambler; Stopped processes; Transformed processes; The case of signed U; Complements; Remarks; 4. Directed index set 
505 8 |a 5.2. Martingales and amartsElementary properties; Complements; 5.3. The Radon-Nikodým property; Scalar and pettis norm convergence; Weak a.s. convergence; Strong convergence; T-convergence; Converses; Complements; 5.4. Geometric properties; The choquet-edgar theorem; Common fixed points for noncommuting maps; Dentability; Strongly exposed points; Complements; Remarks; 5.5. Operator ideals; Absolutely summing operators; Radon-nikodym operators; Asplund operators; Complements; 6. Martingales; 6.1. Maximal inequalities for supermartingales; A maximal inequality; A law of large numbers 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Convergence. 
650 0 |a Probabilities. 
650 0 |a Martingales (Mathematics) 
650 2 |a Probability 
650 6 |a Convergence (Mathématiques) 
650 6 |a Probabilités. 
650 6 |a Martingales (Mathématiques) 
650 7 |a probability.  |2 aat 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Convergence.  |2 fast  |0 (OCoLC)fst00877195 
650 7 |a Martingales (Mathematics)  |2 fast  |0 (OCoLC)fst01010880 
650 7 |a Probabilities.  |2 fast  |0 (OCoLC)fst01077737 
650 7 |a Martingal  |2 gnd 
650 7 |a Stochastische Konvergenz  |2 gnd 
650 7 |a Stoppregel  |2 gnd 
650 1 7 |a Martingalen.  |2 gtt 
650 1 7 |a Convergentie (wiskunde)  |2 gtt 
650 7 |a Convergence (Mathématiques)  |2 ram 
650 7 |a Probabilités.  |2 ram 
650 7 |a Martingales (Mathématiques)  |2 ram 
650 0 7 |a Martingal.  |2 swd 
650 0 7 |a Stochastische Konvergenz.  |2 swd 
650 0 7 |a Stoppregel.  |2 swd 
655 4 |a Maringal. 
655 7 |a Maringal.  |2 swd 
700 1 |a Sucheston, Louis. 
776 0 8 |i Print version:  |a Edgar, Gerald A., 1949-  |t Stopping times and directed processes  |z 0521350239  |w (DLC) 91044388  |w (OCoLC)24953192 
830 0 |a Encyclopedia of mathematics and its applications ;  |v v. 47. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569338  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10450717 
938 |a EBSCOhost  |b EBSC  |n 569338 
938 |a Internet Archive  |b INAR  |n stoppingtimesdir0000edga 
938 |a YBP Library Services  |b YANK  |n 11817868 
994 |a 92  |b IZTAP