Cargando…

Computation with finitely presented groups /

Research in computational group theory, an active subfield of computational algebra, has emphasized four areas: finite permutation groups, finite solvable groups, matrix representations of finite groups, and finitely presented groups. This book deals with the last of these areas. It is the first tex...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sims, Charles C.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [England] ; New York : Cambridge University Press, 1994.
Colección:Encyclopedia of mathematics and its applications ; volume 48.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn861691993
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 131029s1994 enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d E7B  |d COO  |d OCLCO  |d OCLCF  |d OCLCQ  |d AGLDB  |d OCLCQ  |d OCLCO  |d UAB  |d OCLCQ  |d VTS  |d OCLCA  |d STF  |d M8D  |d OCLCO  |d OCLCQ  |d TXE  |d OCLCQ 
019 |a 715161990 
020 |a 9781107088368  |q (electronic bk.) 
020 |a 1107088364  |q (electronic bk.) 
020 |z 0521432138 
020 |z 9780521432139 
029 1 |a DEBBG  |b BV043034819 
029 1 |a DEBSZ  |b 421262044 
029 1 |a GBVCP  |b 805074430 
035 |a (OCoLC)861691993  |z (OCoLC)715161990 
050 4 |a QA171  |b .S6173 1994eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.2  |2 22 
084 |a 31.21  |2 bcl 
084 |a *20-04  |2 msc 
084 |a 20-02  |2 msc 
084 |a 20D15  |2 msc 
084 |a 20F05  |2 msc 
084 |a 20F10  |2 msc 
084 |a 20F16  |2 msc 
084 |a 20F18  |2 msc 
084 |a 20F19  |2 msc 
084 |a 68Q42  |2 msc 
084 |a 68Q45  |2 msc 
084 |a 68W30  |2 msc 
049 |a UAMI 
100 1 |a Sims, Charles C. 
245 1 0 |a Computation with finitely presented groups /  |c Charles C. Sims. 
264 1 |a Cambridge [England] ;  |a New York :  |b Cambridge University Press,  |c 1994. 
300 |a 1 online resource (xiii, 604 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of mathematics and its applications ;  |v volume 48 
504 |a Includes bibliographical references (pages 581-595) and index. 
505 0 |a 1. Basic concepts -- 2. Rewriting systems -- 3. Automata and rational languages -- 4. Subgroups of free products of cyclic groups -- 5. Coset enumeration -- 6. The Reidemeister-Schreier procedure -- 7. Generalized automata -- 8. Abelian groups -- 9. Polycyclic groups -- 10. Module bases -- 11. Quotient groups -- Appendix: Implementation issues. 
520 |a Research in computational group theory, an active subfield of computational algebra, has emphasized four areas: finite permutation groups, finite solvable groups, matrix representations of finite groups, and finitely presented groups. This book deals with the last of these areas. It is the first text to present the fundamental algorithmic ideas which have been developed to compute with finitely presented groups that are infinite, or at least not obviously finite. 
520 8 |a The book describes methods for working with elements, subgroups, and quotient groups of a finitely presented group. The author emphasizes the connection with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, from computational number theory, and from computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms are used to study the abelian quotients of a finitely presented group. 
520 8 |a The work of Baumslag, Cannonito, and Miller on computing nonabelian polycyclic quotients is described as a generalization of Buchberger's Grobner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups, and theoretical computer scientists will find this book useful. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Group theory  |x Data processing. 
650 0 |a Finite groups  |x Data processing. 
650 0 |a Combinatorial group theory  |x Data processing. 
650 6 |a Théorie des groupes  |x Informatique. 
650 6 |a Groupes finis  |x Informatique. 
650 6 |a Théorie combinatoire des groupes  |x Informatique. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Combinatorial group theory  |x Data processing.  |2 fast  |0 (OCoLC)fst00868975 
650 7 |a Finite groups  |x Data processing.  |2 fast  |0 (OCoLC)fst00924909 
650 7 |a Group theory  |x Data processing.  |2 fast  |0 (OCoLC)fst00948523 
650 7 |a Endliche Gruppe  |2 gnd 
650 7 |a Kombinatorische Gruppentheorie  |2 gnd 
650 1 7 |a Eindige groepen.  |2 gtt 
650 1 7 |a Combinatieleer.  |2 gtt 
650 7 |a Groupes, théorie des  |x Informatique.  |2 ram 
650 7 |a Groupes finis  |x Informatique.  |2 ram 
650 7 |a Groupes combinatoires, théorie des  |x Informatique.  |2 ram 
650 0 7 |a Endliche Gruppe.  |2 swd 
650 0 7 |a Kombinatorische Gruppentheorie.  |2 swd 
776 0 8 |i Print version:  |a Sims, Charles C.  |t Computation with finitely presented groups  |z 0521432138  |w (DLC) 92032383  |w (OCoLC)26672381 
830 0 |a Encyclopedia of mathematics and its applications ;  |v volume 48. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569332  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10450723 
938 |a EBSCOhost  |b EBSC  |n 569332 
994 |a 92  |b IZTAP