Cargando…

Justification of the Courant-Friedrichs conjecture for the problem about flow around a wedge /

The classical problem about a steady-state supersonic flow of an inviscid non-heat-conductive gas around an infinite plane wedge under the assumption that the angle at the vertex of the wedge is less than some limit value is considered. The gas is supposed to be in the state of thermodynamical equil...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Blokhin, A. M. (Aleksandr Mikhaĭlovich), Tkachev, D. L., Mishchenko, E. V. (Evgenii͡a Vasilʹevna)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hauppauge. New York : Nova Science Publishers, [2013]
Colección:Mathematics research developments series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn860711981
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 130416s2013 nyu ob 001 0 eng
010 |a  2020686945 
040 |a DLC  |b eng  |e rda  |c DLC  |d YDXCP  |d OCLCF  |d EBLCP  |d DEBSZ  |d AGLDB  |d VTS  |d INT  |d STF  |d M8D  |d VLY  |d AJS  |d N$T  |d OCLCO  |d OCLCQ 
019 |a 923671139  |a 928194607 
020 |z 9781626181700  |q (ebook) 
020 |a 9781624173776  |q (hardcover) 
020 |a 1624173772 
020 |a 1626181705  |q (electronic bk.) 
020 |a 9781626181700  |q (electronic bk.) 
029 1 |a GBVCP  |b 805061266 
029 1 |a DEBSZ  |b 454915764 
029 1 |a DEBSZ  |b 450745287 
029 1 |a DEBSZ  |b 449501914 
029 1 |a DEBBG  |b BV043779477 
035 |a (OCoLC)860711981  |z (OCoLC)923671139  |z (OCoLC)928194607 
050 0 0 |a QC168.85.S45 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 096000  |2 bisacsh 
082 0 0 |a 531/.1133  |2 23 
049 |a UAMI 
245 0 0 |a Justification of the Courant-Friedrichs conjecture for the problem about flow around a wedge /  |c Alexander M. Blokhin and Dimitry L. Tkachev ; edited by Evgeniya V. Mishchenko. 
264 1 |a Hauppauge. New York :  |b Nova Science Publishers,  |c [2013] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics Research Developments 
504 |a Includes bibliographical references (pages [141]-147) and index. 
588 |a Description based on print version record. 
505 0 |a ""JUSTIFICATION OF THE COURANT-FRIEDRICHS CONJECTURE FOR THE PROBLEM ABOUT FLOW AROUND WEDGE""; ""JUSTIFICATION OF THE COURANT-FRIEDRICHS CONJECTURE FOR THE PROBLEM ABOUT FLOW AROUND WEDGE""; ""Library of Congress Cataloging-in-Publication Data""; ""Contents""; ""Preface""; ""Introduction""; ""Chapter 1. Instability of Strong Shock Wave. Case of Small Vertex Angle""; ""1 Preliminaries. Statement of Classical and General-ized Problems. The Main Results""; ""2 Boundary Value Problem for Traces of Solutions"" 
505 8 |a ""3 Partition of Roots for a Polynomial by the Unit Cir-cle. The Cohn Algorithm. Verification of Eq. (2.30)""""4 The Carleman Problem. Finding b Z(Ë? (-), s). Proof of Theorem 1.1""; ""5 Representation of the Boundary Function V (y, t) inthe Cartesian Coordinates and the Asymptotic Be-havior of V (y, t) as t ! 1""; ""Chapter 2. Instability of Strong Shock Wave. General Case""; ""1 Reduction to the Problem in Equations (1.2.34) and(1.2.35) for the Riemann Problem on the Half-Line.Representation of the Trace V (y, t) in the CartesianCoordinates"" 
505 8 |a ""2 Solvability Condition in Equation (1.34) for CartesianCoordinates""""3 Trace Solution of V (y, t) on the Shock Wave with noCompactly Supported Initial Data in R2+. The Lya-punov Instability to Solutions as t ! +1""; ""Chapter 3. Stability of Weak Shock Wave""; ""1 Statement of the Main and Auxiliary Problems. TheMain Results""; ""2 Proof of Theorem 1.1""; ""3 Boundary Values for the Solution to the Problem inEquations (1.16)â€? (1.20) and Its Derivatives. Asymp-totics""; ""Conclusion""; ""Bibliography""; ""Index"" 
520 |a The classical problem about a steady-state supersonic flow of an inviscid non-heat-conductive gas around an infinite plane wedge under the assumption that the angle at the vertex of the wedge is less than some limit value is considered. The gas is supposed to be in the state of thermodynamical equilibrium and admits the existence of a state equation. As is well-known, the problem has two discontinuous solutions, one of which is associated with a strong shock wave (the gas velocity behind the shock wave is less than the sound speed) and the second one corresponds to the weak shock wave (the gas. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Shock waves. 
650 6 |a Ondes de choc. 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x Solids.  |2 bisacsh 
650 7 |a Shock waves.  |2 fast  |0 (OCoLC)fst01116729 
700 1 |a Blokhin, A. M.  |q (Aleksandr Mikhaĭlovich) 
700 1 |a Tkachev, D. L. 
700 1 |a Mishchenko, E. V.  |q (Evgenii͡a Vasilʹevna) 
776 0 8 |i Print version:  |t Justification of the Courant-Friedrichs conjecture for the problem about flow around a wedge  |d Hauppauge. New York : Nova Science Publishers, Inc., [2013]  |z 9781624173776 (hardcover)  |w (DLC) 2013003866 
830 0 |a Mathematics research developments series. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=650509  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 10006169 
938 |a EBSCOhost  |b EBSC  |n 650509 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3023233 
994 |a 92  |b IZTAP