Quantum processes in semiconductors /
Aimed at graduate students, this is a guide to quantum processes of importance in the physics and technology of semiconductors. The fifth edition includes new chapters that expand the coverage of semiconductor physics relevant to its accompanying technology.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Oxford University Press,
2013.
|
Edición: | Fifth edition. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Contents; 1 Band structure of semiconductors; 1.1. The crystal Hamiltonian; 1.2. Adiabatic approximation; 1.3. Phonons; 1.4. The one-electron approximation; 1.5. Bloch functions; 1.6. Nearly-free-electron model; 1.6.1. Group theory notation; 1.7. Energy gaps; 1.8. Spin-orbit coupling and orbital characteristics; 1.9. Band structures; 1.10. Chemical trends; 1.11. k · p perturbation and effective mass; 1.11.1. Oscillator strengths; 1.12. Temperature dependence of energy gaps; 1.13. Deformation potentials; 1.14. Alloys; References; 2 Energy levels; 2.1. The effective-mass approximation
- 2.2. Electron dynamics2.3. Zener-Bloch oscillations; 2.4. Landau levels; 2.5. Plasma oscillations; 2.6. Excitons; 2.7. Hydrogenic impurities; 2.8. Hydrogen molecule centres; 2.9. Core effects; 2.10. Deep-level impurities; 2.11. Scattering states; 2.12. Impurity bands; References; 3 Lattice scattering; 3.1. General features; 3.2. Energy and momentum conservation; 3.2.1. Spherical parabolic band; 3.2.2. Spherical non-parabolic band; 3.2.3. Ellipsoidal parabolic bands; 3.2.4. Equivalent valleys; 3.2.5. Non-equivalent valleys; 3.3. Acoustic phonon scattering; 3.3.1. Spherical band: equipartition
- 3.3.2. Spherical band: zero-point scattering3.3.3. Spheroidal parabolic bands; 3.3.4. Momentum and energy relaxation; 3.4. Optical phonon scattering; 3.4.1. Inter-valley scattering; 3.4.2. First-order processes; 3.5. Polar optical mode scattering; 3.5.1. The effective charge; 3.5.2. Energy and momentum relaxation; 3.6. Piezoelectric scattering; 3.7. Scattering-induced electron mass; 3.8. Mobilities; 3.9. Appendix: Acoustic waves in the diamond lattice; References; 4 Impurity scattering; 4.1. General features; 4.2. Charged-impurity scattering; 4.2.1. Conwell-Weisskopf approximation
- 4.2.2. Brooks-Herring approach4.2.3. Uncertainty broadening; 4.2.4. Statistical screening; 4.3. Neutral-impurity scattering; 4.3.1. Hydrogenic models; 4.3.2. Square-well models; 4.3.3. Sclar's formula; 4.3.4. Resonance scattering; 4.3.5. Statistical screening; 4.4. Central-cell contribution to charged-impurity scattering; 4.5. Dipole scattering; 4.6. Electron-hole scattering; 4.7. Electron-electron scattering; 4.8. Mobilities; 4.9. Appendix: Debye screening length; 4.10. Appendix: Average separation of impurities; 4.11. Appendix: Alloy scattering; References; 5 Radiative transitions
- 5.1. Transition rate5.1.1. Local field correction; 5.1.2. Photon drag; 5.2. Photo-ionization and radiative capture cross-sections; 5.3. Wavefunctions; 5.4. Direct interband transitions; 5.4.1. Excitonic absorption; 5.5. Photo-deionization of a hydrogenic acceptor; 5.6. Photo-ionization of a hydrogenic donor; 5.7. Photo-ionization of quantum-defect impurities; 5.8. Photo-ionization of deep-level impurities; 5.9. Summary of photo-ionization cross-sections; 5.10. Indirect transitions; 5.11. Indirect interband transitions; 5.12. Free-carrier absorption; 5.12.1. Energy and momentum