|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBSCO_ocn858762131 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130921s2013 gw o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d OCLCQ
|d CN3GA
|d OCLCO
|d N$T
|d DEBSZ
|d E7B
|d OCLCQ
|d OCLCF
|d YDXCP
|d DEBBG
|d NKT
|d UIU
|d AGLDB
|d MOR
|d PIFAG
|d ZCU
|d MERUC
|d CUY
|d OCLCQ
|d JBG
|d DEGRU
|d U3W
|d STF
|d VTS
|d ICG
|d INT
|d OCLCQ
|d LEAUB
|d DKC
|d OCLCQ
|d M8D
|d UKAHL
|d OCLCQ
|d U9X
|d AJS
|d UWK
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|d SFB
|
020 |
|
|
|a 9783110258615
|q (electronic bk.)
|
020 |
|
|
|a 3110258617
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000054195482
|
029 |
1 |
|
|a CHBIS
|b 010396687
|
029 |
1 |
|
|a CHVBK
|b 331231972
|
029 |
1 |
|
|a DEBBG
|b BV042348282
|
029 |
1 |
|
|a DEBBG
|b BV042992016
|
029 |
1 |
|
|a DEBBG
|b BV043037065
|
029 |
1 |
|
|a DEBBG
|b BV044062467
|
029 |
1 |
|
|a DEBSZ
|b 397477813
|
029 |
1 |
|
|a DEBSZ
|b 421242450
|
029 |
1 |
|
|a NZ1
|b 15319396
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:999934001405765
|
035 |
|
|
|a (OCoLC)858762131
|
050 |
|
4 |
|a QA378.5 .S25 2013
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.357
|a 515/.357
|
084 |
|
|
|a SK 520
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Sakhnovich, Lev A.
|
245 |
1 |
0 |
|a Inverse Problems and Nonlinear Evolution Equations :
|b Solutions, Darboux Matrices and Weyl-Titchmarsh Functions.
|
260 |
|
|
|a Berlin :
|b De Gruyter,
|c 2013.
|
300 |
|
|
|a 1 online resource (356 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a De Gruyter Studies in Mathematics
|
505 |
0 |
|
|a Preface; Notation; 0 Introduction; 1 Preliminaries; 1.1 Simple transformations and examples; 1.1.1 Dirac-type systems as a subclass of canonical systems; 1.1.2 Schrödinger systems as a subclass of canonical systems; 1.1.3 Gauge transformations of the Dirac systems; 1.2 S-nodes and Weyl functions; 1.2.1 Elementary properties of S-nodes; 1.2.2 Continual factorization; 1.2.3 Canonical systems and representation of the S-nodes; 1.2.4 Asymptotics of the Weyl functions, a special case; 1.2.5 Factorization of the operators S; 1.2.6 Weyl functions of Dirac and Schrödinger systems.
|
505 |
8 |
|
|a 2 Self-adjoint Dirac system: rectangular matrix potentials2.1 Square matrix potentials: spectral and Weyl theories; 2.1.1 Spectral and Weyl functions: direct problem; 2.1.2 Spectral and Weyl functions: inverse problem; 2.2 Weyl theory for Dirac system with a rectangularmatrix potential; 2.2.1 Direct problem; 2.2.2 Direct and inverse problems: explicit solutions; 2.3 Recovery of the Dirac system: general case; 2.3.1 Representation of the fundamental solution; 2.3.2 Weyl function: high energy asymptotics; 2.3.3 Inverse problem and Borg-Marchenko-type uniqueness theorem.
|
505 |
8 |
|
|a 2.3.4 Weyl function and positivity of S3 Skew-self-adjoint Dirac system: rectangular matrix potentials; 3.1 Direct problem; 3.2 The inverse problem on a finite interval and semiaxis; 3.3 System with a locally bounded potential; 4 Linear system auxiliary to the nonlinear optics equation; 4.1 Direct and inverse problems; 4.1.1 Bounded potentials; 4.1.2 Locally bounded potentials; 4.1.3 Weyl functions; 4.1.4 Some generalizations; 4.2 Conditions on the potential and asymptotics of generalized Weyl (GW) functions; 4.2.1 Preliminaries. Beals-Coifman asymptotics.
|
505 |
8 |
|
|a 4.2.2 Inverse problem and Borg-Marchenko-type result4.3 Direct and inverse problems: explicit solutions; 5 Discretesystems; 5.1 Discrete self-adjoint Dirac system; 5.1.1 Dirac system and Szegö recurrence; 5.1.2 Weyl theory: direct problems; 5.1.3 Weyl theory: inverse problems; 5.2 Discrete skew-self-adjoint Dirac system; 5.3 GBDT for the discrete skew-self-adjoint Dirac system; 5.3.1 Main results; 5.3.2 The fundamental solution; 5.3.3 Weyl functions: direct and inverse problems; 5.3.4 Isotropic Heisenberg magnet; 6 Integrable nonlinear equations.
|
505 |
8 |
|
|a 6.1 Compatibility condition and factorization formula6.1.1 Main results; 6.1.2 Proof of Theorem 6.1; 6.1.3 Application to the matrix "focusing" modified Korteweg-de Vries (mKdV); 6.1.4 Second harmonic generation: Goursat problem; 6.2 Sine-Gordon theory in a semistrip; 6.2.1 Complex sine-Gordon equation: evolution of the Weyl function and uniqueness of the solution; 6.2.2 Sine-Gordon equation in a semistrip; 6.2.3 Unbounded solutions in the quarter-plane; 7 General GBDT theorems and explicit solutions of nonlinear equations; 7.1 Explicit solutions of the nonlinear optics equation.
|
500 |
|
|
|a 7.2 GBDT for linear system depending rationally on z.
|
520 |
|
|
|a This monograph fits theclearlyneed for books with a rigorous treatment of theinverse problems for non-classical systems and that of initial-boundary-value problems for integrable nonlinear equations. The authorsdevelop a unified treatment of explicit and global solutions via the transfer matrix function in a form due to Lev A. Sakhnovich. The book primarily addresses specialists in the field. However, it is self-contained andstarts with preliminaries and examples, and hencealso serves as an introduction for advanced graduate students in the field.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Inverse problems (Differential equations)
|
650 |
|
0 |
|a Evolution equations, Nonlinear.
|
650 |
|
0 |
|a Darboux transformations.
|
650 |
|
0 |
|a Boundary value problems.
|
650 |
|
0 |
|a Matrices.
|
650 |
|
0 |
|a Functions.
|
650 |
|
6 |
|a Problèmes inverses (Équations différentielles)
|
650 |
|
6 |
|a Équations d'évolution non linéaires.
|
650 |
|
6 |
|a Transformations de Darboux.
|
650 |
|
6 |
|a Problèmes aux limites.
|
650 |
|
6 |
|a Matrices.
|
650 |
|
6 |
|a Fonctions (Mathématiques)
|
650 |
|
7 |
|a functions (mathematics)
|2 aat
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Boundary value problems
|2 fast
|
650 |
|
7 |
|a Darboux transformations
|2 fast
|
650 |
|
7 |
|a Evolution equations, Nonlinear
|2 fast
|
650 |
|
7 |
|a Functions
|2 fast
|
650 |
|
7 |
|a Inverse problems (Differential equations)
|2 fast
|
650 |
|
7 |
|a Matrices
|2 fast
|
650 |
|
7 |
|a Darboux-Transformation
|2 gnd
|
650 |
|
7 |
|a Nichtlineare Evolutionsgleichung
|2 gnd
|
650 |
|
7 |
|a Inverses Problem
|2 gnd
|
650 |
|
7 |
|a Randwertproblem
|2 gnd
|
653 |
|
|
|a Application.
|
653 |
|
|
|a Differential Equation.
|
653 |
|
|
|a Direct Problem.
|
653 |
|
|
|a Explicit Solution.
|
653 |
|
|
|a Global Solution.
|
653 |
|
|
|a Initial-Boundary-Value Problem.
|
653 |
|
|
|a Integrable Nonlinear Equation.
|
653 |
|
|
|a Inverse Problem.
|
700 |
1 |
|
|a Sakhnovich, Alexander L.
|
700 |
1 |
|
|a Roitberg, Inna Ya.
|
776 |
0 |
8 |
|i Print version:
|a Sakhnovich, Lev A.
|t Inverse Problems and Nonlinear Evolution Equations : Solutions, Darboux Matrices and Weyl-Titchmarsh Functions.
|d Berlin : De Gruyter, ©2013
|z 9783110258608
|
830 |
|
0 |
|a De Gruyter studies in mathematics.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641731
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25311088
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9783110258615
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1121584
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10786169
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 641731
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10817434
|
994 |
|
|
|a 92
|b IZTAP
|