Cargando…

Metric Embeddings : Bilipschitz and Coarse Embeddings into Banach Spaces.

Embeddings of discrete metric spaces into Banach spaces recently became an important tool in computer science and topology. The book will help readers to enter and to work in this very rapidly developing area having many important connections with different parts of mathematics and computer science....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ostrovskii, Mikhail I.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, 2013.
Colección:De Gruyter studies in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn858761960
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130921s2013 gw ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d CN3GA  |d OCLCO  |d N$T  |d DEBSZ  |d E7B  |d COO  |d OCLCQ  |d OCLCF  |d YDXCP  |d K6U  |d DEBBG  |d WTV  |d OCLCQ  |d UIU  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d DEGRU  |d U3W  |d STF  |d OCLCQ  |d VTS  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d REC  |d U9X  |d OCLCQ  |d AUD  |d OCLCO  |d OCLCQ  |d OCLCO  |d SFB 
019 |a 877444489  |a 945991124  |a 961590347  |a 962566490  |a 974465477  |a 974541277  |a 1031936389  |a 1055379447  |a 1058736832  |a 1066050276  |a 1081241551  |a 1096219655 
020 |a 9783110264012  |q (electronic bk.) 
020 |a 3110264013  |q (electronic bk.) 
020 |a 3110263408 
020 |a 9783110263404 
020 |a 9783119166225  |q (set) 
020 |a 3119166227  |q (set) 
020 |z 9783110263404 
024 8 |a ebc1130384 
029 1 |a AU@  |b 000054195479 
029 1 |a CHBIS  |b 010396705 
029 1 |a CHVBK  |b 331234017 
029 1 |a DEBBG  |b BV042992017 
029 1 |a DEBBG  |b BV043037429 
029 1 |a DEBBG  |b BV044062520 
029 1 |a DEBSZ  |b 397487215 
029 1 |a DEBSZ  |b 405123795 
029 1 |a DEBSZ  |b 421242442 
029 1 |a NZ1  |b 15293059 
029 1 |a AU@  |b 000066754769 
035 |a (OCoLC)858761960  |z (OCoLC)877444489  |z (OCoLC)945991124  |z (OCoLC)961590347  |z (OCoLC)962566490  |z (OCoLC)974465477  |z (OCoLC)974541277  |z (OCoLC)1031936389  |z (OCoLC)1055379447  |z (OCoLC)1058736832  |z (OCoLC)1066050276  |z (OCoLC)1081241551  |z (OCoLC)1096219655 
050 4 |a QA322.2 .O88 2013 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.732  |a 515/.732 
084 |a SK 600  |2 rvk 
049 |a UAMI 
100 1 |a Ostrovskii, Mikhail I. 
245 1 0 |a Metric Embeddings :  |b Bilipschitz and Coarse Embeddings into Banach Spaces. 
260 |a Berlin :  |b De Gruyter,  |c 2013. 
300 |a 1 online resource (384 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter Studies in Mathematics 
588 0 |a Print version record. 
505 0 |a Preface; 1 Introduction: examples of metrics, embeddings, and applications; 1.1 Metric spaces: definitions and main examples; 1.2 Types of embeddings: isometric, bilipschitz, coarse, and uniform; 1.2.1 Isometric embeddings; 1.2.2 Bilipschitz embeddings; 1.2.3 Coarse and uniform embeddings; 1.3 Probability theory terminology and notation; 1.4 Applications to the sparsest cut problem; 1.5 Exercises; 1.6 Notes and remarks; 1.6.1 To Section 1.1; 1.6.2 To Section 1.2; 1.6.3 To Section 1.3; 1.6.4 To Section 1.4; 1.6.5 To exercises; 1.7 On applications in topology; 1.8 Hints to exercises. 
505 8 |a 2 Embeddability of locally finite metric spaces into Banach spaces is finitely determined. Related Banach space theory2.1 Introduction; 2.2 Banach space theory: ultrafilters, ultraproducts, finite representability; 2.2.1 Ultrafilters; 2.2.2 Ultraproducts; 2.2.3 Finite representability; 2.3 Proofs of the main results on relations between embeddability of a locally finite metric space and its finite subsets; 2.3.1 Proof in the bilipschitz case; 2.3.2 Proof in the coarse case; 2.3.3 Remarks on extensions of finite determination results. 
505 8 |a 2.4 Banach space theory: type and cotype of Banach spaces, Khinchin and Kahane inequalities2.4.1 Rademacher type and cotype; 2.4.2 Kahane-Khinchin inequality; 2.4.3 Characterization of spaces with trivial type or cotype; 2.5 Some corollaries of the theorems on finite determination of embeddability of locally finite metric spaces; 2.6 Exercises; 2.7 Notes and remarks; 2.8 Hints to exercises; 3 Constructions of embeddings; 3.1 Padded decompositions and their applications to constructions of embeddings; 3.2 Padded decompositions of minor-excluded graphs. 
505 8 |a 3.3 Padded decompositions in terms of ball growth3.4 Gluing single-scale embeddings; 3.5 Exercises; 3.6 Notes and remarks; 3.7 Hints to exercises; 4 Obstacles for embeddability: Poincaré inequalities; 4.1 Definition of Poincaré inequalities for metric spaces; 4.2 Poincaré inequalities for expanders; 4.3 Lp-distortion in terms of constants in Poincaré inequalities; 4.4 Euclidean distortion and positive semidefinite matrices; 4.5 Fourier analytic method of getting Poincaré inequalities; 4.6 Exercises; 4.7 Notes and remarks; 4.8 A bit of history of coarse embeddability; 4.9 Hints to exercises. 
505 8 |a 5 Families of expanders and of graphs with large girth5.1 Introduction; 5.2 Spectral characterization of expanders; 5.3 Kazhdan's property (T) and expanders; 5.4 Groups with property (T); 5.4.1 Finite generation of SLn(Z); 5.4.2 Finite quotients of SLn(Z); 5.4.3 Property (T) for groups SLn(Z); 5.4.4 Criterion for property (T); 5.5 Zigzag products; 5.6 Graphs with large girth: basic definitions; 5.7 Graph lift constructions and l1-embeddable graphs with large girth; 5.8 Probabilistic proof of existence of expanders; 5.9 Size and diameter of graphs with large girth: basic facts. 
500 |a 5.10 Random constructions of graphs with large girth. 
520 |a Embeddings of discrete metric spaces into Banach spaces recently became an important tool in computer science and topology. The book will help readers to enter and to work in this very rapidly developing area having many important connections with different parts of mathematics and computer science. The purpose of the book is to present some of the most important techniques and results, mostly on bilipschitz and coarse embeddings. The topics include embeddability of locally finite metric spaces into Banach spaces is finitely determined, constructions of embeddings, distortion in terms of Poinc. 
504 |a Includes bibliographical references (pages 335-360) and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Banach spaces. 
650 0 |a Lipschitz spaces. 
650 0 |a Stochastic partial differential equations. 
650 6 |a Espaces de Banach. 
650 6 |a Espaces de Lipschitz. 
650 6 |a Équations aux dérivées partielles stochastiques. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Banach spaces  |2 fast 
650 7 |a Lipschitz spaces  |2 fast 
650 7 |a Stochastic partial differential equations  |2 fast 
653 |a Banach Space Theory. 
653 |a Bilipschitz Embedding. 
653 |a Coarse Embedding. 
653 |a Embedding of Discrete Metric Spaces. 
653 |a Functional Analysis. 
653 |a Graph Theory. 
776 0 8 |i Print version:  |a Ostrovskii, Mikhail I.  |t Metric Embeddings : Bilipschitz and Coarse Embeddings into Banach Spaces.  |d Berlin : De Gruyter, ©2013  |z 9783110263404 
830 0 |a De Gruyter studies in mathematics. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641736  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25311456 
938 |a De Gruyter  |b DEGR  |n 9783110264012 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1130384 
938 |a ebrary  |b EBRY  |n ebr10786199 
938 |a EBSCOhost  |b EBSC  |n 641736 
938 |a YBP Library Services  |b YANK  |n 10817487 
994 |a 92  |b IZTAP