Cargando…

Nonconservative Stability Problems of Modern Physics.

This work gives a complete overview on the subject of nonconservative stability from the modern point of view. Relevant mathematical concepts are presented, as well as rigorous stability results and numerous classical and contemporary examples from mechanics and physics. The book shall serve to pres...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kirillov, Oleg N.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, 2013.
Colección:De Gruyter studies in mathematical physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_ocn858761731
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130921s2013 gw ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d CN3GA  |d OCLCO  |d N$T  |d E7B  |d OCLCF  |d OCLCQ  |d OCLCO  |d COO  |d DEBBG  |d YDXCP  |d CUS  |d DEBSZ  |d OCLCQ  |d D6H  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d DEGRU  |d I9W  |d I8H  |d U3W  |d STF  |d VNS  |d OCLCQ  |d VTS  |d CRU  |d ICG  |d INT  |d VT2  |d AU@  |d CUY  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d U9X  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 877443339  |a 961659973  |a 962642040  |a 1055383639  |a 1065718371  |a 1081230778 
020 |a 9783110270433  |q (electronic bk.) 
020 |a 3110270439  |q (electronic bk.) 
020 |a 9783110270341 
020 |a 311027034X 
029 1 |a CHBIS  |b 010396735 
029 1 |a CHVBK  |b 331235307 
029 1 |a DEBBG  |b BV042348428 
029 1 |a DEBBG  |b BV043133111 
029 1 |a DEBBG  |b BV044062301 
029 1 |a DEBSZ  |b 421242396 
029 1 |a DEBSZ  |b 431242062 
029 1 |a DEBSZ  |b 472799290 
029 1 |a NZ1  |b 15920379 
029 1 |a AU@  |b 000054195463 
035 |a (OCoLC)858761731  |z (OCoLC)877443339  |z (OCoLC)961659973  |z (OCoLC)962642040  |z (OCoLC)1055383639  |z (OCoLC)1065718371  |z (OCoLC)1081230778 
050 4 |a QA871 .K57 2013 
072 7 |a SCI  |x 024000  |2 bisacsh 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 055000  |2 bisacsh 
082 0 4 |a 530.4/74  |a 530.474 
084 |a SK 950  |2 rvk 
049 |a UAMI 
100 1 |a Kirillov, Oleg N. 
245 1 0 |a Nonconservative Stability Problems of Modern Physics. 
260 |a Berlin :  |b De Gruyter,  |c 2013. 
300 |a 1 online resource (448 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter Studies in Mathematical Physics 
588 0 |a Print version record. 
505 0 |a Preface; 1 Introduction; 1.1 Gyroscopic stabilization on a rotating surface; 1.1.1 Brouwer's mechanical model; 1.1.2 Eigenvalue problems and the characteristic equation; 1.1.3 Eigencurves and bifurcation of multiple eigenvalues; 1.1.4 Singular stability boundary of the rotating saddle trap; 1.2 Manifestations of Brouwer's model in physics; 1.2.1 Stability of deformable rotors; 1.2.2 Foucault's pendulum, Bryan's effect, Coriolis vibratory gyroscopes, and the Hannay-Berry phase; 1.2.3 Polarized light within a cholesteric liquid crystal; 1.2.4 Helical magnetic quadrupole focussing systems. 
505 8 |a 1.2.5 Modulational instability1.3 Brouwer's problem with damping and circulatory forces; 1.3.1 Circulatory forces; 1.3.2 Dissipation-induced instability of negative energy modes; 1.3.3 Circulatory systems and the destabilization paradox; 1.3.4 Merkin's theorem, Nicolai's paradox, and subcritical flutter; 1.3.5 Indefinite damping and parity-time (PT) symmetry; 1.4 Scope of the book; 2 Lyapunov stability and linear stability analysis; 2.1 Main facts and definitions; 2.1.1 Stability, instability, and uniform stability; 2.1.2 Attractivity and asymptotic stability. 
505 8 |a 2.1.3 Autonomous, nonautonomous, and periodic systems2.2 The direct (second) method of Lyapunov; 2.2.1 Lyapunov functions; 2.2.2 Lyapunov and Persidskii theorems on stability; 2.2.3 Chetaev and Lyapunov theorems on instability; 2.3 The indirect (first) method of Lyapunov; 2.3.1 Linearization; 2.3.2 The characteristic exponent of a solution; 2.3.3 Lyapunov regularity of linearization; 2.3.4 Stability and instability in the first approximation; 2.4 Linear stability analysis; 2.4.1 Autonomous systems; 2.4.2 Lyapunov transformation and reducibility; 2.4.3 Periodic systems. 
505 8 |a 2.4.4 Example. Coupled parametric oscillators2.5 Algebraic criteria for asymptotic stability; 2.5.1 Lyapunov's matrix equation and stability criterion; 2.5.2 The Leverrier-Faddeev algorithm and Lewin's formula; 2.5.3 Müller's solution to the matrix Lyapunov equation; 2.5.4 Inertia theorems and observability index; 2.5.5 Hermite's criterion via the matrix Lyapunov equation; 2.5.6 Routh-Hurwitz, Liénard-Chipart, and Bilharz criteria; 2.6 Robust Hurwitz stability vs. structural instability; 2.6.1 Multiple eigenvalues: singularities and structural instabilities. 
505 8 |a 2.6.2 Multiple eigenvalues: spectral abscissa minimization and robust stability3 Hamiltonian and gyroscopic systems; 3.1 Sobolev's top and an indefinite metric; 3.2 Elements of Pontryagin and Krein space theory; 3.3 Canonical and Hamiltonian equations; 3.3.1 Krein signature of eigenvalues; 3.3.2 Krein collision or linear Hamiltonian-Hopf bifurcation; 3.3.3 MacKay's cones, veering, and instability bubbles; 3.3.4 Instability degree and count of eigenvalues; 3.3.5 Graphical interpretation of the Krein signature; 3.3.6 Strong stability: robustness to Hamiltonian's variation. 
500 |a 3.3.7 Inertia theorems and stability of gyroscopic systems. 
520 |a This work gives a complete overview on the subject of nonconservative stability from the modern point of view. Relevant mathematical concepts are presented, as well as rigorous stability results and numerous classical and contemporary examples from mechanics and physics. The book shall serve to present and prospective specialists providing the current state of knowledge in this actively developing field. The understanding of this theory is vital for many areas of technology, as dissipative effects in rotor dynamics orcelestial mechanics. 
504 |a Includes bibliographies (pages 387-422) and indexes. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Stability  |x Mathematical models. 
650 0 |a Eigenvalues. 
650 0 |a Oscillations. 
650 0 |a Mechanical impedance. 
650 4 |a Eigenvalues. 
650 4 |a Mechanical impedance. 
650 4 |a Oscillations. 
650 4 |a SCIENCE  |x Energy. 
650 4 |a SCIENCE  |x Mechanics  |x General. 
650 4 |a Stability  |x Mathematical models. 
650 4 |a Physik. 
650 6 |a Stabilité  |x Modèles mathématiques. 
650 6 |a Valeurs propres. 
650 6 |a Oscillations. 
650 6 |a Impédance mécanique. 
650 7 |a oscillation.  |2 aat 
650 7 |a SCIENCE  |x Energy.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a Eigenvalues.  |2 fast  |0 (OCoLC)fst00904031 
650 7 |a Mechanical impedance.  |2 fast  |0 (OCoLC)fst01013414 
650 7 |a Oscillations.  |2 fast  |0 (OCoLC)fst01048658 
650 7 |a Stability  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01131207 
650 7 |a Stabilität  |2 gnd 
650 7 |a Physikalisches System  |2 gnd 
650 7 |a Nichtkonservative Kraft  |2 gnd 
776 0 8 |i Print version:  |a Kirillov, Oleg N.  |t Nonconservative Stability Problems of Modern Physics.  |d Berlin : De Gruyter, ©2013  |z 9783110270341 
830 0 |a De Gruyter studies in mathematical physics. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641747  |z Texto completo 
880 0 0 |6 505-00/(S  |t Frontmatter --  |t Preface --  |t Contents --  |t Chapter 1: Introduction --  |t Chapter 2: Lyapunov stability and linear stability analysis --  |t Chapter 3: Hamiltonian and gyroscopic systems --  |t Chapter 4: Reversible and circulatory systems --  |t Chapter 5: Influence of structure of forces on stability --  |t Chapter 6: Dissipation-induced instabilities --  |t Chapter 7: Nonself-adjoint boundary eigenvalue problems for differential operators and operator matrices dependent on parameters --  |t Chapter 8: The destabilization paradox in continuous circulatory systems --  |t Chapter 9: The MHD kinematic mean field α2-dynamo --  |t Chapter 10: Campbell diagrams of gyroscopic continua and subcritical friction-induced flutter --  |t Chapter 11: Non-Hermitian perturbation of Hermitian matrices with physical applications --  |t Chapter 12: Magnetorotational instability --  |t References --  |t Index. 
938 |a YBP Library Services  |b YANK  |n 10817533 
938 |a EBSCOhost  |b EBSC  |n 641747 
938 |a ebrary  |b EBRY  |n ebr10786193 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1037918 
938 |a De Gruyter  |b DEGR  |n 9783110270433 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25311879 
994 |a 92  |b IZTAP