Cargando…

Combinatorial games : tic-tac-toe theory /

"Traditional game theory has been successful at developing strategy in games of incomplete information: when one player knows something that the other does not. But it has little to say about games of complete information, for example, tic-tac-toe, solitaire, and hex. This is the subject of com...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Beck, József
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2008.
Colección:Encyclopedia of mathematics and its applications ; v. 114.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn857769768
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130909s2008 enka ob 000 0 eng d
010 |z  2008275067 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d E7B  |d COO  |d OCLCO  |d IDEBK  |d UMI  |d DEBSZ  |d AUD  |d EBLCP  |d MHW  |d OCLCF  |d YDXCP  |d OCLCQ  |d LOA  |d OCLCQ  |d COCUF  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d UAB  |d STF  |d WRM  |d OCLCQ  |d CEF  |d ICG  |d VTS  |d OCLCQ  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OL$  |d OCLCQ  |d A6Q  |d G3B  |d OCLCQ  |d AU@  |d LUN  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d TUHNV  |d INARC 
015 |a GBA783952  |2 bnb 
016 7 |a 014100601  |2 Uk 
019 |a 715157024  |a 776951260  |a 862411929  |a 960201839  |a 961589027  |a 962697790  |a 992040105  |a 1037702428  |a 1038590024  |a 1055373955  |a 1059117156  |a 1066675937  |a 1097118850  |a 1167410648  |a 1228554919  |a 1243581692  |a 1391297993 
020 |a 9781461941460  |q (electronic bk.) 
020 |a 1461941466  |q (electronic bk.) 
020 |a 9780511735202  |q (ebook) 
020 |a 0511735200  |q (ebook) 
020 |a 9781107390225 
020 |a 1107390222 
020 |a 9780521184755  |q (paperback) 
020 |a 0521184754 
020 |z 9780521461009 
020 |z 0521461006 
029 1 |a AU@  |b 000052281994 
029 1 |a DEBBG  |b BV041433332 
029 1 |a DEBBG  |b BV044177954 
029 1 |a DEBSZ  |b 398293244 
029 1 |a DEBSZ  |b 39887591X 
029 1 |a GBVCP  |b 785373764 
035 |a (OCoLC)857769768  |z (OCoLC)715157024  |z (OCoLC)776951260  |z (OCoLC)862411929  |z (OCoLC)960201839  |z (OCoLC)961589027  |z (OCoLC)962697790  |z (OCoLC)992040105  |z (OCoLC)1037702428  |z (OCoLC)1038590024  |z (OCoLC)1055373955  |z (OCoLC)1059117156  |z (OCoLC)1066675937  |z (OCoLC)1097118850  |z (OCoLC)1167410648  |z (OCoLC)1228554919  |z (OCoLC)1243581692  |z (OCoLC)1391297993 
037 |a CL0500000331  |b Safari Books Online 
050 4 |a QA269  |b .B335 2008eb 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.3  |2 22 
049 |a UAMI 
100 1 |a Beck, József. 
245 1 0 |a Combinatorial games :  |b tic-tac-toe theory /  |c József Beck. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2008. 
300 |a 1 online resource (xiv, 732 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Encyclopedia of mathematics and its applications ;  |v volume 114 
505 0 |a pt. A. Weak win and strong draw -- ch. I. Win vs. weak win -- Illustration : every finite point set in the plane is a weak winner -- Analyzing the proof of theorem 1.1 -- Examples : tic-tac-toe games -- More examples : tic-tac-toe like games -- Games on hypergraphs, and the combinatorial chaos -- ch. II. The main result : exact solutions for infinite classes of games -- Ramsey theory and clique games -- Arithmetic progressions -- Two-dimensional arithmetic progressions -- Explaining the exact solutions : a meta-conjecture -- Potentials and the Erdős-Selfridge theorem -- Local vs. global -- Ramsey theory and hypercube tic-tac-toe -- pt. B. Basic potential technique : game-theoretic first and second moments -- ch. III. Simple applications -- Easy building via theorem 1.2 -- Games beyond Ramsey theory -- A generalization of Kaplansky's game -- ch. IV. Games and randomness -- Discrepancy games and the variance -- Biased discrepancy games : when the extension from fair to biased works! -- A simple illustration of "randomness" (I) -- A simple illustration of "randomness" (II) -- Another illustration of "randomness" in games. 
505 0 |a pt. C. Advanced weak win : game-theoretic higher moment -- ch. V. Self-improving potentials -- Motivating the probabilistic approach -- Game-theoretic second moment : application to the picker-choose game -- Weak win in the lattice games -- Game-theoretic higher moments -- Exact solution of the clique game (I) -- More applications -- Who-scores-more games -- ch. VI. What is the biased meta-conjecture, and why is it so difficult? -- Discrepancy games (I) -- Discrepancy games (II) -- Biased games (I) : biased meta-conjecture -- Biased games (II) : sacrificing the probabilistic intuition to force negativity -- Biased games (III) : sporadic results -- Biased games (IV) : more sporadic results -- pt. D. Advanced strong draw : game-theoretic independence -- ch. VII. BigGame-SmallGame decomposition -- The Hales-Jewett conjecture -- Reinforcing the Erdős-Selfridge technique (I) -- Reinforcing the Erdős-Selfridge technique (II) -- Almost disjoint hypergraphs -- Exact solution of the clique game (II). 
505 0 |a ch. VIII. Advanced decomposition -- Proof of the second ugly theorem -- Breaking the "square-root barrier" (I) -- Breaking the "square-root barrier" (II) -- Van der Waerden game and the RELARIN technique -- ch. IX. Game-theoretic lattice-numbers -- Winning planes : exact solution -- Winning lattices : exact solution -- I-can-you-can't games -- second player's moral victory -- ch. X. Conclusion -- More exact solutions and more partial results -- Miscellany (I) -- Miscellany (II) -- Concluding remarks -- Appendix A : Ramsey numbers -- Appendix B : Hales-Jewett theorem : Shelah's proof -- Appendix C : A formal treatment of positional games -- Appendix D : An informal introduction to game theory. 
504 |a Includes bibliographical references. 
520 1 |a "Traditional game theory has been successful at developing strategy in games of incomplete information: when one player knows something that the other does not. But it has little to say about games of complete information, for example, tic-tac-toe, solitaire, and hex. This is the subject of combinatorial game theory. Most board games are a challenge for mathematics: to analyze a position one has to examine the available options, and then the further options available after selecting any option, and so on. This leads to combinatorial chaos, where brute force study is impractical." "In this comprehensive volume, Jozsef Beck shows readers how to escape from the combinatorial chaos via the fake probabilistic method, a game-theoretic adaptation of the probabilistic method in combinatorics. Using this, the author is able to determine the exact results about infinite classes of many games, leading to the discovery of some striking new duality principles."--Jacket 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Game theory. 
650 0 |a Combinatorial analysis. 
650 2 |a Game Theory 
650 6 |a Théorie des jeux. 
650 6 |a Analyse combinatoire. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Combinatorial analysis.  |2 fast  |0 (OCoLC)fst00868961 
650 7 |a Game theory.  |2 fast  |0 (OCoLC)fst00937501 
776 0 8 |i Print version:  |a Beck, József.  |t Combinatorial games  |z 9780521461009  |w (DLC) 2008275067  |w (OCoLC)175284055 
830 0 |a Encyclopedia of mathematics and its applications ;  |v v. 114. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=616988  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13431053 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385074 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1543508 
938 |a ebrary  |b EBRY  |n ebr10449417 
938 |a EBSCOhost  |b EBSC  |n 616988 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26244512 
938 |a YBP Library Services  |b YANK  |n 3583404 
938 |a YBP Library Services  |b YANK  |n 11117857 
938 |a YBP Library Services  |b YANK  |n 11338532 
938 |a YBP Library Services  |b YANK  |n 12530848 
938 |a Internet Archive  |b INAR  |n combinatorialgam0000beck 
994 |a 92  |b IZTAP