Cargando…

Mathematical analysis : a straightforward approach /

For the second edition of this very successful text, Professor Binmore has written two chapters on analysis in vector spaces. The discussion extends to the notion of the derivative of a vector function as a matrix and the use of second derivatives in classifying stationary points. Some necessary con...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Binmore, K. G., 1940-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1982.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn857769537
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130909s1982 enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d CAMBR  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d AU@  |d M8D  |d UKAHL  |d OCLCQ  |d LIP  |d INARC  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 847521081  |a 1150287554  |a 1194424411 
020 |a 9781139648479  |q (electronic bk.) 
020 |a 1139648470  |q (electronic bk.) 
020 |a 9781139171656  |q (electronic bk.) 
020 |a 1139171658  |q (electronic bk.) 
020 |z 0521246806 
020 |z 9780521246804 
020 |z 0521288827 
020 |z 9780521288828 
029 1 |a DEBBG  |b BV043027940 
029 1 |a DEBSZ  |b 446441473 
035 |a (OCoLC)857769537  |z (OCoLC)847521081  |z (OCoLC)1150287554  |z (OCoLC)1194424411 
050 4 |a QA300  |b .B536 1982eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515  |2 22 
084 |a 31.41  |2 bcl 
049 |a UAMI 
100 1 |a Binmore, K. G.,  |d 1940- 
245 1 0 |a Mathematical analysis :  |b a straightforward approach /  |c K.G. Binmore. 
250 |a Second edition. 
264 1 |a Cambridge [Cambridgeshire] ;  |a New York :  |b Cambridge University Press,  |c 1982. 
300 |a 1 online resource (xi, 361 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a For the second edition of this very successful text, Professor Binmore has written two chapters on analysis in vector spaces. The discussion extends to the notion of the derivative of a vector function as a matrix and the use of second derivatives in classifying stationary points. Some necessary concepts from linear algebra are included where appropriate. The first edition contained numerous worked examples and an ample collection of exercises for all of which solutions were provided at the end of the book. The second edition retains this feature but in addition offers a set of problems for which no solutions are given. Teachers may find this a helpful innovation. 
505 0 |a Cover; Title; Copyright; Contents; Preface to the first edition; Preface to the second edition; 1 Real numbers; 1.1 Set notation; 1.2 The set of real numbers; 1.3 Arithmetic; 1.4 Inequalities; 1.9 Roots; 1.10 Quadratic equations; 1.13 Irrational nurnbers; 1.14 Modulus; 2 Continuum property; 2.1 Achilles and the tortoise; 2.2 The continuum property; 2.6 Supremum and infimum; 2.7 Maximum and minimum; 2.9 Intervals; 2.11 Manipulations with sup and inf; 3 Natural numbers; 3.1 Introduction; 3.2 Archimedean property; 3.7 Principle of induction; 4 Convergent sequences; 4.1 The bulldozers and the bee 
505 8 |a 4.2 Sequences4.4 Definition of convergence; 4.7 Criteria for convergence; 4.15 Monotone sequences; 4.21 Some simple properties of convergent sequences; 4.26 Divergent sequences; 5 Subsequences; 5.1 Subsequences; 5.8 Bolzano-Weierstrass theorem; 5.12 Lim sup and lim inf; 5.16 Cauchy sequences; 6 Series; 6.1 Definitions; 6.4 Series of positive terms; 6.7 Elementary properties of series; 6.12 Series and Cauchy sequences; 6.20 Absolute and conditional convergence; 6.23 Manipulations with series; 7 Functions; 7.1 Notation; 7.6 Polynomial and rational functions; 7.9 Combining functions 
505 8 |a 7.11 Inverse functions7.13 Bounded functions; 8 Limits of functions; 8.1 Limits from the left; 8.2 Limits from the right; 8.3 f(x) [rarr] 1as x [rarr] [xi]; 8.6 Continuity at a point; 8.8 Connexion with convergent sequences; 8.11 Properties of limits; 8.16 Limits of composite functions; 8.18 Divergence; 9 Continuity; 9.1 Continuity on an interval; 9.7 Continuity property; 10 Differentiation; 10.1 Derivatives; 10.2 Higher derivatives; 10.4 More notation; 10.5 Properties of differentiable functions; 10.12 Composite functions; 11 Mean value theorems; 11.1 Local maxima and minima 
505 8 |a 11.3 Stationary points11.5 Mean value theorem; 11.9 Taylor's theorem; 12 Monotone functions; 12.1 Definitions; 12.3 Limits of monotone functions; 12.6 Differentiable monotone functions; 12.9 Inverse functions; 12.11 Roots; 12.13 Convex functions; 13 Integration; 13.1 Area; 13.2 The integral; 13.3 Some properties of the integral; 13.9 Differentiation and integration; 13.16 Riemann integral; 13.19 More properties of the integral; 13.27 Improper integrals; 13.31 Euler-Maclaurin summation formula; 14 Exponential and logarithm; 14.1 Logarithm; 14.4 Exponential; 14.6 Powers; 15 Power series 
505 8 |a 15.1 Interval of convergence15.4 Taylor series; 15.7 Continuity and differentiation; 16 Trigonometric functions; 16.1 Introduction; 16.2 Sine and cosine; 16.4 Periodicity; 17 The gamma function; 17.1 Introduction; 17.2 Stirling's formula; 17.4 The gamma function; 17.6 Properties of the gamma function; 18 Vectors; 18.1 Introduction; 18.2 Vectors; 18.4 Length and angle in R[sup(n)]; 18.8 Inequalities; 18.10 Distance; 18.12 Direction; 18.13 Lines; 18.15 Hyperplanes; 18.18 Flats; 18.21 Vector functions; 18.22 Linear and affine functions; 18.26 Convergence of sequences in R[sup(n)] 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematical analysis. 
650 6 |a Analyse mathématique. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Mathematical analysis.  |2 fast  |0 (OCoLC)fst01012068 
650 7 |a Analyse mathématique.  |2 ram 
776 0 8 |i Print version:  |a Binmore, K.G., 1940-  |t Mathematical analysis.  |b Second edition  |z 0521246806  |w (DLC) 81021728  |w (OCoLC)8112921 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=510997  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25225994 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33351116 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26478634 
938 |a EBSCOhost  |b EBSC  |n 510997 
938 |a Internet Archive  |b INAR  |n mathematicalanal0000binm 
938 |a YBP Library Services  |b YANK  |n 11120265 
938 |a YBP Library Services  |b YANK  |n 11140683 
938 |a YBP Library Services  |b YANK  |n 11335962 
938 |a YBP Library Services  |b YANK  |n 10755548 
994 |a 92  |b IZTAP