Holomorphy and convexity in Lie theory /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Walter de Gruyter,
2000.
|
Colección: | De Gruyter expositions in mathematics ;
28. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- A. Abstract Representation Theory
- Chapter I. Reproducing Kernel Spaces 3
- I.1. Operator-Valued Positive Definite Kernels 3
- I.2. The Cone of Positive Definite Kernels 14
- Chapter II. Representations of Involutive Semigroups 20
- II. 1. Involutive Semigroups 21
- II. 2. Bounded Representations 24
- II. 3. Hermitian Representations 29
- II. 4. Representations on Reproducing Kernel Spaces 34
- Chapter III. Positive Definite Functions on Involutive Semigroups 52
- III. 1. Positive Definite Functions
- the Discrete Case 53
- III. 2. Enveloping C*-algebras 68
- III. 3. Multiplicity Free Representations 80
- Chapter IV. Continuous and Holomorphic Representations 99
- IV. 1. Continuous Representations and Positive Definite Functions 99
- IV. 2. Holomorphic Representations of Involutive Semigroups 119
- B. Convex Geometry and Representations of Vector Spaces
- Chapter V. Convex Sets and Convex Functions 125
- V.1. Convex Sets and Cones 126
- V.2. Finite Reflection Groups and Convex Sets 138
- V.3. Convex Functions and Fenchel Duality 147
- V.4. Laplace Transforms 163
- V.5. The Characteristic Function of a Convex Set 174
- Chapter VI. Representations of Cones and Tubes 184
- VI. 1. Commutative Representation Theory 185
- VI. 2. Representations of Cones 195
- VI. 3. Holomorphic Representations of Tubes 205
- VI. 4. Realization of Cyclic Representations by Holomorphic Functions 209
- VI. 5. Holomorphic Extensions of Unitary Representations 214
- C. Convex Geometry of Lie Algebras
- Chapter VII. Convexity in Lie Algebras 221
- VII. 1. Compactly Embedded Cartan Subalgebras 222
- VII. 2. Root Decompositions 231
- VII. 3. Lie Algebras With Many Invariant Convex Sets 251
- Chapter VIII. Convexity Theorems and Their Applications 265
- VIII. 1. Admissible Coadjoint Orbits and Convexity Theorems 266
- VIII. 2. The Structure of Admissible Lie Algebras 292
- VIII. 3. Invariant Elliptic Cones in Lie Algebras 306
- D. Highest Weight Representations of Lie Algebras, Lie Groups, and Semigroups
- Chapter IX. Unitary Highest Weight Representations: Algebraic Theory 327
- IX. 1. Generalized Highest Weight Representations 328
- IX. 2. Positive Complex Polarizations 344
- IX. 3. Highest Weight Modules of Finite-Dimensional Lie Algebras 356
- IX. 4. The Metaplectic Factorization 361
- IX. 5. Unitary Highest Weight Representations of Hermitian Lie Algebras 374
- Chapter X. Unitary Highest Weight Representations: Analytic Theory 387
- X.1. The Convex Moment Set of a Unitary Representation 388
- X.2. Irreducible Unitary Representations 394
- X.3. The Metaplectic Representation and Its Applications 400
- X.4. Special Properties of Unitary Highest Weight Representations 411
- X.5. Moment Sets for C*-algebras 419
- X.6. Moment Sets for Group Representations 428
- Chapter XI. Complex Ol'shanskii Semigroups and Their Representations 442
- XI. 1. Lawson's Theorem on Ol'shanskii Semigroups 443
- XI. 2. Holomorphic Extension of Unitary Representations 457
- XI. 3. Holomorphic Representations of Ol'shanskii Semigroups 464
- XI. 4. Irreducible Holomorphic Representations 470
- XI. 5. Gelfand-Raikov Theorems for Ol'shanskii Semigroups 476
- XI. 6. Decomposition and Characters of Holomorphic Representations 477
- Chapter XII. Realization of Highest Weight Representations on Complex Domains 493
- XII. 1. The Structure of Groups of Harish-Chandra Type 494
- XII. 2. Representations of Groups of Harish-Chandra Type 514
- XII. 3. The Compression Semigroup and Its Representations 524
- XII. 5. Hilbert Spaces of Square Integrable Holomorphic Functions 538
- E. Complex Geometry and Representation Theory
- Chapter XIII. Complex and Convex Geometry of Complex Semigroups 557
- XIII. 1. Locally Convex Functions and Local Recession Cones 559
- XIII. 2. Invariant Convex Sets and Functions in Lie Algebras 563
- XIII. 3. Calculations in Low-Dimensional Cases 571
- XIII. 4. Biinvariant Plurisubharmonic Functions 576
- XIII. 5. Complex Semigroups and Stein Manifolds 586
- XIII. 6. Biinvariant Domains of Holomorphy 595
- Chapter XIV. Biinvariant Hilbert Spaces and Hardy Spaces on Complex Semigroups 600
- XIV. 1. Biinvariant Hilbert Spaces 601
- XIV. 2. Hardy Spaces Defined by Sup-Norms 608
- XIV. 3. Hardy Spaces Defined by Square Integrability 616
- XIV. 4. The Fine Structure of Hardy Spaces 623
- Chapter XV. Coherent State Representations 645
- XV. 1. Complex Structures on Homogeneous Spaces 646
- XV. 2. Coherent State Representations 650
- XV. 3. Heisenberg's Uncertainty Principle and Coherent States 656
- Appendix I. Bounded Operators on Hilbert Spaces 665
- Appendix II. Spectral Measures and Unbounded Operators 677
- Appendix III. Holomorphic Functions on Infinite-Dimensional Spaces 686
- Appendix IV. Symplectic Geometry 694
- Appendix V. Simple Modules of p-Length 2 705
- Appendix VI. Symplectic Modules of Convex Type 715
- Appendix VII. Square Integrable Representations of Locally Compact Groups 727
- Appendix VIII. The Stone-von Neumann-Mackey Theorem 742.