Cargando…

Dynamic models for volatility and heavy tails : with applications to financial and economic time series /

Presents a statistical theory for a class of nonlinear time-series models. The overall approach will be of interest to econometricians and statisticians.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Harvey, A. C. (Andrew C.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2013.
Colección:Econometric Society monographs ; no. 52.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn857489673
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130903s2013 enka ob 001 0 eng d
010 |a  2012036508 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d YDXCP  |d OCLCO  |d CAMBR  |d EBLCP  |d CDX  |d MHW  |d OCLCF  |d OCLCQ  |d MEAUC  |d DEBSZ  |d VLB  |d OCLCQ  |d COO  |d INT  |d AU@  |d OCLCQ  |d YDX  |d IUL  |d U3G  |d OL$  |d OCLCQ  |d LOA  |d K6U  |d VT2  |d OCLCQ  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 843079230  |a 862787028  |a 1085072197  |a 1087479284  |a 1107776443  |a 1109946317  |a 1111154996  |a 1117843689  |a 1153005143  |a 1170693991  |a 1171233332  |a 1228587581 
020 |a 9781107336889  |q (electronic bk.) 
020 |a 1107336880  |q (electronic bk.) 
020 |a 1139540939  |q (electronic bk.) 
020 |a 9781139540933  |q (electronic bk.) 
020 |a 9781107335226 
020 |a 1107335221 
020 |z 9781107034723 
020 |z 1107034728 
020 |z 9781107630024 
020 |z 1107630029 
020 |a 9781107333567  |q (electronic bk.) 
020 |a 1107333563  |q (electronic bk.) 
029 1 |a AU@  |b 000052915083 
029 1 |a AU@  |b 000055915299 
029 1 |a DEBBG  |b BV041572782 
029 1 |a DEBSZ  |b 431353670 
029 1 |a NLGGC  |b 369312643 
035 |a (OCoLC)857489673  |z (OCoLC)843079230  |z (OCoLC)862787028  |z (OCoLC)1085072197  |z (OCoLC)1087479284  |z (OCoLC)1107776443  |z (OCoLC)1109946317  |z (OCoLC)1111154996  |z (OCoLC)1117843689  |z (OCoLC)1153005143  |z (OCoLC)1170693991  |z (OCoLC)1171233332  |z (OCoLC)1228587581 
050 4 |a HB139  |b .H369 2013eb 
072 7 |a BUS  |x 069000  |2 bisacsh 
072 7 |a BUS  |x 055000  |2 bisacsh 
082 0 4 |a 330.01/5195  |2 23 
049 |a UAMI 
100 1 |a Harvey, A. C.  |q (Andrew C.) 
245 1 0 |a Dynamic models for volatility and heavy tails :  |b with applications to financial and economic time series /  |c Andrew C. Harvey. 
264 1 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource (xviii, 261 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Econometric society monographs ;  |v 52 
504 |a Includes bibliographical references (pages 247-254) and indexes. 
588 0 |a Print version record. 
520 |a Presents a statistical theory for a class of nonlinear time-series models. The overall approach will be of interest to econometricians and statisticians. 
505 0 |6 880-01  |a Preface; Acronyms and Abbreviations; 1 Introduction; 1.1 Unobserved Components and Filters; 1.2 Independence, White Noise and Martingale Differences; 1.2.1 The Law of Iterated Expectations and Optimal Predictions; 1.2.2 Definitions and Properties; 1.3 Volatility; 1.3.1 Stochastic Volatility; 1.3.2 Generalized Autoregressive Conditional Heteroscedasticity; 1.3.3 Exponential GARCH; 1.3.4 Variance, Scale and Outliers; 1.3.5 Location/Scale Models; 1.4 Dynamic Conditional Score Models; 1.5 Distributions and Quantiles; 1.6 Plan of Book; 2 Statistical Distributions and Asymptotic Theory. 
505 8 |a 2.1 Distributions2.1.1 Student's t Distribution; 2.1.2 General Error Distribution; 2.1.3 Beta Distribution; 2.1.4 Gamma Distribution; 2.2 Maximum Likelihood; 2.2.1 Student's t Distribution; 2.2.2 General Error Distribution; 2.2.3 Gamma Distribution; 2.2.4 Consistency and Asymptotic Normality*; 2.3 Maximum Likelihood Estimation; 2.3.1 An Information Matrix Lemma; 2.3.2 Information Matrix for the First-Order Model; 2.3.3 Information Matrix with the 0=x""010E Parameterization*; 2.3.4 Asymptotic Distribution; 2.3.5 Consistency and Asymptotic Normality*; 2.3.6 Nonstationarity. 
505 8 |a 2.3.7 Several Parameters2.4 Higher Order Models; 2.5 Tests; 2.5.1 Serial Correlation; 2.5.2 Goodness of Fit of Distributions; 2.5.3 Residuals; 2.5.4 Model Fit; 2.6 Explanatory Variables; 3 Location; 3.1 Dynamic Student's t Location Model; 3.2 Basic Properties; 3.2.1 Generalization and Reduced Form; 3.2.2 Moments of the Observations; 3.2.3 Autocorrelation Function; 3.3 Maximum Likelihood Estimation; 3.3.1 Asymptotic Distribution of the Maximum Likelihood Estimator; 3.3.2 Monte Carlo Experiments; 3.3.3 Application to U.S. GDP; 3.4 Parameter Restrictions* 
505 8 |a 3.5 Higher Order Models and the State Space Form*3.5.1 Linear Gaussian Models and the Kalman Filter; 3.5.2 The DCS Model; 3.5.3 QARMA Models; 3.6 Trend and Seasonality; 3.6.1 Local Level Model; 3.6.2 Application to Weekly Hours of Employees in U.S. Manufacturing; 3.6.3 Local Linear Trend; 3.6.4 Stochastic Seasonal; 3.6.5 Application to Rail Travel; 3.6.6 QARIMA and Seasonal QARIMA Models*; 3.7 Smoothing; 3.7.1 Weights; 3.7.2 Smoothing Recursions for Linear State Space Models; 3.7.3 Smoothing Recursions for DCS Models; 3.7.4 Conditional Mode Estimation and the Score; 3.8 Forecasting. 
505 8 |a 3.8.1 QARMA Models3.8.2 State Space Form*; 3.9 Components and Long Memory; 3.10 General Error Distribution; 3.11 Skew Distributions; 3.11.1 How to Skew a Distribution; 3.11.2 Dynamic Skew-t Location Model; 4 Scale; 4.1 Beta-tttt-EGARCH; 4.2 Properties of Stationary Beta-tttt-EGARCH Models; 4.2.1 Exponential GARCH; 4.2.2 Moments; 4.2.3 Autocorrelation Functions of Squares and Powersof Absolute Values; 4.2.4 Autocorrelations and Kurtosis; 4.3 Leverage Effects; 4.4 Gamma-GED-EGARCH; 4.5 Forecasting; 4.5.1 Beta-t-EGARCH; 4.5.2 Gamma-GED-EGARCH; 4.5.3 Integrated Exponential Models. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Econometrics. 
650 0 |a Finance  |x Mathematical models. 
650 0 |a Time-series analysis. 
650 6 |a Économétrie. 
650 6 |a Finances  |x Modèles mathématiques. 
650 6 |a Série chronologique. 
650 7 |a BUSINESS & ECONOMICS  |x Economics  |x General.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Reference.  |2 bisacsh 
650 7 |a Econometrics.  |2 fast  |0 (OCoLC)fst00901574 
650 7 |a Finance  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00924398 
650 7 |a Time-series analysis.  |2 fast  |0 (OCoLC)fst01151190 
650 7 |a Nichtlineare Zeitreihenanalyse  |2 gnd 
650 7 |a Wahrscheinlichkeitsverteilung  |2 gnd 
650 7 |a Dynamisches Modell  |2 gnd 
776 0 8 |i Print version:  |a Harvey, A.C. (Andrew C.).  |t Dynamic models for volatility and heavy tails  |z 9781107034723  |w (DLC) 2012036508  |w (OCoLC)811777444 
830 0 |a Econometric Society monographs ;  |v no. 52. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=533825  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.1.  |t Unobserved Components and Filters --  |g 1.2.  |t Independence, White Noise and Martingale Differences --  |g 1.2.1.  |t Law of Iterated Expectations and Optimal Predictions --  |g 1.2.2.  |t Definitions and Properties --  |g 1.3.  |t Volatility --  |g 1.3.1.  |t Stochastic Volatility --  |g 1.3.2.  |t Generalized Autoregressive Conditional Heteroscedasticity --  |g 1.3.3.  |t Exponential GARCH --  |g 1.3.4.  |t Variance, Scale and Outliers --  |g 1.3.5.  |t Location/Scale Models --  |g 1.4.  |t Dynamic Conditional Score Models --  |g 1.5.  |t Distributions and Quantiles --  |g 1.6.  |t Plan of Book --  |g 2.1.  |t Distributions --  |g 2.1.1.  |t Student's t Distribution --  |g 2.1.2.  |t General Error Distribution --  |g 2.1.3.  |t Beta Distribution --  |g 2.1.4.  |t Gamma Distribution --  |g 2.2.  |t Maximum Likelihood --  |g 2.2.1.  |t Student's t Distribution --  |g 2.2.2.  |t General Error Distribution --  |g 2.2.3.  |t Gamma Distribution --  |g 2.2.4.  |t Consistency and Asymptotic Normality* --  |g 2.3.  |t Maximum Likelihood Estimation of Dynamic Conditional Score Models --  |g 2.3.1.  |t Information Matrix Lemma --  |g 2.3.2.  |t Information Matrix for the First-Order Model --  |g 2.3.3.  |t Information Matrix with the δ Parameterization* --  |g 2.3.4.  |t Asymptotic Distribution --  |g 2.3.5.  |t Consistency and Asymptotic Normality* --  |g 2.3.6.  |t Nonstationarity --  |g 2.3.7.  |t Several Parameters --  |g 2.4.  |t Higher Order Models* --  |g 2.5.  |t Tests --  |g 2.5.1.  |t Serial Correlation --  |g 2.5.2.  |t Goodness of Fit of Distributions --  |g 2.5.3.  |t Residuals --  |g 2.5.4.  |t Model Fit --  |g 2.6.  |t Explanatory Variables --  |g 3.1.  |t Dynamic Student's t Location Model --  |g 3.2.  |t Basic Properties --  |g 3.2.1.  |t Generalization and Reduced Form --  |g 3.2.2.  |t Moments of the Observations --  |g 3.2.3.  |t Autocorrelation Function --  |g 3.3.  |t Maximum Likelihood Estimation --  |g 3.3.1.  |t Asymptotic Distribution of the Maximum Likelihood Estimator --  |g 3.3.2.  |t Monte Carlo Experiments --  |g 3.3.3.  |t Application to U.S. GDP --  |g 3.4.  |t Parameter Restrictions* --  |g 3.5.  |t Higher Order Models and the State Space Form* --  |g 3.5.1.  |t Linear Gaussian Models and the Kalman Filter --  |g 3.5.2.  |t DCS Model --  |g 3.5.3.  |t QARMA Models --  |g 3.6.  |t Trend and Seasonality --  |g 3.6.1.  |t Local Level Model --  |g 3.6.2.  |t Application to Weekly Hours of Employees in U.S. Manufacturing --  |g 3.6.3.  |t Local Linear Trend --  |g 3.6.4.  |t Stochastic Seasonal --  |g 3.6.5.  |t Application to Rail Travel --  |g 3.6.6.  |t QARIMA and Seasonal QARIMA Models* --  |g 3.7.  |t Smoothing --  |g 3.7.1.  |t Weights --  |g 3.7.2.  |t Smoothing Recursions for Linear State Space Models --  |g 3.7.3.  |t Smoothing Recursions for DCS Models --  |g 3.7.4.  |t Conditional Mode Estimation and the Score --  |g 3.8.  |t Forecasting --  |g 3.8.1.  |t QARMA Models --  |g 3.8.2.  |t State Space Form* --  |g 3.9.  |t Components and Long Memory --  |g 3.10.  |t General Error Distribution --  |g 3.11.  |t Skew Distributions --  |g 3.11.1.  |t How to Skew a Distribution --  |g 3.11.2.  |t Dynamic Skew-t Location Model --  |g 4.1.  |t Beta-t-EGARCH --  |g 4.2.  |t Properties of Stationary Beta-t-EGARCH Models --  |g 4.2.1.  |t Exponential GARCH --  |g 4.2.2.  |t Moments --  |g 4.2.3.  |t Autocorrelation Functions of Squares and Powers of Absolute Values --  |g 4.2.4.  |t Autocorrelations and Kurtosis --  |g 4.3.  |t Leverage Effects --  |g 4.4.  |t Gamma-GED-EGARCH --  |g 4.5.  |t Forecasting --  |g 4.5.1.  |t Beta-t-EGARCH --  |g 4.5.2.  |t Gamma-GED-EGARCH --  |g 4.5.3.  |t Integrated Exponential Models --  |g 4.5.4.  |t Predictive Distribution --  |g 4.6.  |t Maximum Likelihood Estimation and Inference --  |g 4.6.1.  |t Asymptotic Theory for Beta-t-EGARCH --  |g 4.6.2.  |t Monte Carlo Experiments --  |g 4.6.3.  |t Gamma-GED-EGARCH --  |g 4.6.4.  |t Leverage --  |g 4.7.  |t Beta-t-GARCH --  |g 4.7.1.  |t Properties of First-Order Model --  |g 4.7.2.  |t Leverage Effects --  |g 4.7.3.  |t Link with Beta-t-EGARCH --  |g 4.7.4.  |t Estimation and Inference --  |g 4.7.5.  |t Gamma-GED-GARCH --  |g 4.8.  |t Smoothing --  |g 4.9.  |t Application to Hang Seng and Dow Jones --  |g 4.10.  |t Two Component Models --  |g 4.11.  |t Trends, Seasonals and Explanatory Variables in Volatility Equations --  |g 4.12.  |t Changing Location --  |g 4.12.1.  |t Explanatory Variables --  |g 4.12.2.  |t Stochastic Location and Stochastic Scale --  |g 4.13.  |t Testing for Changing Volatility and Leverage --  |g 4.13.1.  |t Portmanteau Test for Changing Volatility --  |g 4.13.2.  |t Martingale Difference Test --  |g 4.13.3.  |t Leverage --  |g 4.13.4.  |t Diagnostics --  |g 4.14.  |t Skew Distributions --  |g 4.15.  |t Time-Varying Skewness and Kurtosis* --  |g 5.1.  |t General Properties --  |g 5.1.1.  |t Heavy Tails --  |g 5.1.2.  |t Moments and Autocorrelations --  |g 5.1.3.  |t Forecasts --  |g 5.1.4.  |t Asymptotic Distribution of Maximum Likelihood Estimators --  |g 5.2.  |t Generalized Gamma Distribution --  |g 5.2.1.  |t Moments --  |g 5.2.2.  |t Forecasts --  |g 5.2.3.  |t Maximum Likelihood Estimation --  |g 5.3.  |t Generalized Beta Distribution --  |g 5.3.1.  |t Log-Logistic Distribution --  |g 5.3.2.  |t Moments, Autocorrelations and Forecasts --  |g 5.3.3.  |t Maximum Likelihood Estimation --  |g 5.3.4.  |t Burr Distribution --  |g 5.3.5.  |t Generalized Pareto Distribution --  |g 5.3.6.  |t F Distribution --  |g 5.4.  |t Log-Normal Distribution --  |g 5.5.  |t Monte Carlo Experiments --  |g 5.6.  |t Leverage, Long Memory and Diurnal Variation --  |g 5.7.  |t Tests and Model Selection --  |g 5.8.  |t Estimating Volatility from the Range --  |g 5.8.1.  |t Application to Paris CAC and Dow Jones --  |g 5.8.2.  |t Range-EGARCH Model --  |g 5.9.  |t Duration --  |g 5.10.  |t Realized Volatility --  |g 5.11.  |t Count Data and Qualitative Observations --  |g 6.1.  |t Kernel Density Estimation for Time Series --  |g 6.1.1.  |t Filtering and Smoothing --  |g 6.1.2.  |t Estimation --  |g 6.1.3.  |t Correcting for Changing Mean and Variance --  |g 6.1.4.  |t Specification and Diagnostic Checking --  |g 6.2.  |t Time-Varying Quantiles --  |g 6.2.1.  |t Kernel-Based Estimation --  |g 6.2.2.  |t Direct Estimation of Individual Quantiles --  |g 6.3.  |t Forecasts --  |g 6.4.  |t Application to NASDAQ Returns --  |g 6.4.1.  |t Direct Modelling of Returns --  |g 6.4.2.  |t ARMA-GARCH Residuals --  |g 6.4.3.  |t Bandwidth and Tails --  |g 7.1.  |t Multivariate Distributions --  |g 7.1.1.  |t Estimation --  |g 7.1.2.  |t Regression --  |g 7.1.3.  |t Dynamic Models --  |g 7.2.  |t Multivariate Location Models --  |g 7.2.1.  |t Structural Time Series Models --  |g 7.2.2.  |t DCS Model for the Multivariate t --  |g 7.2.3.  |t Asymptotic Theory* --  |g 7.2.4.  |t Regression and Errors in Variables --  |g 7.3.  |t Dynamic Correlation --  |g 7.3.1.  |t Bivariate Gaussian Model --  |g 7.3.2.  |t Time-Varying Parameters in Regression --  |g 7.3.3.  |t Multivariate t Distribution --  |g 7.3.4.  |t Tests of Changing Correlation --  |g 7.4.  |t Dynamic Multivariate Scale --  |g 7.5.  |t Dynamic Scale and Association --  |g 7.6.  |t Copulas --  |g 7.6.1.  |t Copulas and Quantiles --  |g 7.6.2.  |t Measures of Association --  |g 7.6.3.  |t Maximum Likelihood Estimation --  |g 7.6.4.  |t Dynamic Copulas --  |g 7.6.5.  |t Tests Against Changing Association --  |g A.1.  |t Unconditional Mean Parameterization --  |g A.2.  |t Paramerization with δ --  |g A.3.  |t Leverage --  |g B.1.  |t Beta-t-EGARCH --  |g B.2.  |t Gamma-GED-EGARCH --  |g B.3.  |t Beta-t-GARCH. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34207425 
938 |a Coutts Information Services  |b COUT  |n 26124643 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1139620 
938 |a EBSCOhost  |b EBSC  |n 533825 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26124643 
938 |a YBP Library Services  |b YANK  |n 11088561 
938 |a YBP Library Services  |b YANK  |n 10706099 
938 |a YBP Library Services  |b YANK  |n 11120126 
938 |a YBP Library Services  |b YANK  |n 11088762 
994 |a 92  |b IZTAP