|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn857489673 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130903s2013 enka ob 001 0 eng d |
010 |
|
|
|a 2012036508
|
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d IDEBK
|d YDXCP
|d OCLCO
|d CAMBR
|d EBLCP
|d CDX
|d MHW
|d OCLCF
|d OCLCQ
|d MEAUC
|d DEBSZ
|d VLB
|d OCLCQ
|d COO
|d INT
|d AU@
|d OCLCQ
|d YDX
|d IUL
|d U3G
|d OL$
|d OCLCQ
|d LOA
|d K6U
|d VT2
|d OCLCQ
|d UKAHL
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|
066 |
|
|
|c (S
|
019 |
|
|
|a 843079230
|a 862787028
|a 1085072197
|a 1087479284
|a 1107776443
|a 1109946317
|a 1111154996
|a 1117843689
|a 1153005143
|a 1170693991
|a 1171233332
|a 1228587581
|
020 |
|
|
|a 9781107336889
|q (electronic bk.)
|
020 |
|
|
|a 1107336880
|q (electronic bk.)
|
020 |
|
|
|a 1139540939
|q (electronic bk.)
|
020 |
|
|
|a 9781139540933
|q (electronic bk.)
|
020 |
|
|
|a 9781107335226
|
020 |
|
|
|a 1107335221
|
020 |
|
|
|z 9781107034723
|
020 |
|
|
|z 1107034728
|
020 |
|
|
|z 9781107630024
|
020 |
|
|
|z 1107630029
|
020 |
|
|
|a 9781107333567
|q (electronic bk.)
|
020 |
|
|
|a 1107333563
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000052915083
|
029 |
1 |
|
|a AU@
|b 000055915299
|
029 |
1 |
|
|a DEBBG
|b BV041572782
|
029 |
1 |
|
|a DEBSZ
|b 431353670
|
029 |
1 |
|
|a NLGGC
|b 369312643
|
035 |
|
|
|a (OCoLC)857489673
|z (OCoLC)843079230
|z (OCoLC)862787028
|z (OCoLC)1085072197
|z (OCoLC)1087479284
|z (OCoLC)1107776443
|z (OCoLC)1109946317
|z (OCoLC)1111154996
|z (OCoLC)1117843689
|z (OCoLC)1153005143
|z (OCoLC)1170693991
|z (OCoLC)1171233332
|z (OCoLC)1228587581
|
050 |
|
4 |
|a HB139
|b .H369 2013eb
|
072 |
|
7 |
|a BUS
|x 069000
|2 bisacsh
|
072 |
|
7 |
|a BUS
|x 055000
|2 bisacsh
|
082 |
0 |
4 |
|a 330.01/5195
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Harvey, A. C.
|q (Andrew C.)
|
245 |
1 |
0 |
|a Dynamic models for volatility and heavy tails :
|b with applications to financial and economic time series /
|c Andrew C. Harvey.
|
264 |
|
1 |
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 2013.
|
300 |
|
|
|a 1 online resource (xviii, 261 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
490 |
1 |
|
|a Econometric society monographs ;
|v 52
|
504 |
|
|
|a Includes bibliographical references (pages 247-254) and indexes.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Presents a statistical theory for a class of nonlinear time-series models. The overall approach will be of interest to econometricians and statisticians.
|
505 |
0 |
|
|6 880-01
|a Preface; Acronyms and Abbreviations; 1 Introduction; 1.1 Unobserved Components and Filters; 1.2 Independence, White Noise and Martingale Differences; 1.2.1 The Law of Iterated Expectations and Optimal Predictions; 1.2.2 Definitions and Properties; 1.3 Volatility; 1.3.1 Stochastic Volatility; 1.3.2 Generalized Autoregressive Conditional Heteroscedasticity; 1.3.3 Exponential GARCH; 1.3.4 Variance, Scale and Outliers; 1.3.5 Location/Scale Models; 1.4 Dynamic Conditional Score Models; 1.5 Distributions and Quantiles; 1.6 Plan of Book; 2 Statistical Distributions and Asymptotic Theory.
|
505 |
8 |
|
|a 2.1 Distributions2.1.1 Student's t Distribution; 2.1.2 General Error Distribution; 2.1.3 Beta Distribution; 2.1.4 Gamma Distribution; 2.2 Maximum Likelihood; 2.2.1 Student's t Distribution; 2.2.2 General Error Distribution; 2.2.3 Gamma Distribution; 2.2.4 Consistency and Asymptotic Normality*; 2.3 Maximum Likelihood Estimation; 2.3.1 An Information Matrix Lemma; 2.3.2 Information Matrix for the First-Order Model; 2.3.3 Information Matrix with the 0=x""010E Parameterization*; 2.3.4 Asymptotic Distribution; 2.3.5 Consistency and Asymptotic Normality*; 2.3.6 Nonstationarity.
|
505 |
8 |
|
|a 2.3.7 Several Parameters2.4 Higher Order Models; 2.5 Tests; 2.5.1 Serial Correlation; 2.5.2 Goodness of Fit of Distributions; 2.5.3 Residuals; 2.5.4 Model Fit; 2.6 Explanatory Variables; 3 Location; 3.1 Dynamic Student's t Location Model; 3.2 Basic Properties; 3.2.1 Generalization and Reduced Form; 3.2.2 Moments of the Observations; 3.2.3 Autocorrelation Function; 3.3 Maximum Likelihood Estimation; 3.3.1 Asymptotic Distribution of the Maximum Likelihood Estimator; 3.3.2 Monte Carlo Experiments; 3.3.3 Application to U.S. GDP; 3.4 Parameter Restrictions*
|
505 |
8 |
|
|a 3.5 Higher Order Models and the State Space Form*3.5.1 Linear Gaussian Models and the Kalman Filter; 3.5.2 The DCS Model; 3.5.3 QARMA Models; 3.6 Trend and Seasonality; 3.6.1 Local Level Model; 3.6.2 Application to Weekly Hours of Employees in U.S. Manufacturing; 3.6.3 Local Linear Trend; 3.6.4 Stochastic Seasonal; 3.6.5 Application to Rail Travel; 3.6.6 QARIMA and Seasonal QARIMA Models*; 3.7 Smoothing; 3.7.1 Weights; 3.7.2 Smoothing Recursions for Linear State Space Models; 3.7.3 Smoothing Recursions for DCS Models; 3.7.4 Conditional Mode Estimation and the Score; 3.8 Forecasting.
|
505 |
8 |
|
|a 3.8.1 QARMA Models3.8.2 State Space Form*; 3.9 Components and Long Memory; 3.10 General Error Distribution; 3.11 Skew Distributions; 3.11.1 How to Skew a Distribution; 3.11.2 Dynamic Skew-t Location Model; 4 Scale; 4.1 Beta-tttt-EGARCH; 4.2 Properties of Stationary Beta-tttt-EGARCH Models; 4.2.1 Exponential GARCH; 4.2.2 Moments; 4.2.3 Autocorrelation Functions of Squares and Powersof Absolute Values; 4.2.4 Autocorrelations and Kurtosis; 4.3 Leverage Effects; 4.4 Gamma-GED-EGARCH; 4.5 Forecasting; 4.5.1 Beta-t-EGARCH; 4.5.2 Gamma-GED-EGARCH; 4.5.3 Integrated Exponential Models.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Econometrics.
|
650 |
|
0 |
|a Finance
|x Mathematical models.
|
650 |
|
0 |
|a Time-series analysis.
|
650 |
|
6 |
|a Économétrie.
|
650 |
|
6 |
|a Finances
|x Modèles mathématiques.
|
650 |
|
6 |
|a Série chronologique.
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Economics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Econometrics.
|2 fast
|0 (OCoLC)fst00901574
|
650 |
|
7 |
|a Finance
|x Mathematical models.
|2 fast
|0 (OCoLC)fst00924398
|
650 |
|
7 |
|a Time-series analysis.
|2 fast
|0 (OCoLC)fst01151190
|
650 |
|
7 |
|a Nichtlineare Zeitreihenanalyse
|2 gnd
|
650 |
|
7 |
|a Wahrscheinlichkeitsverteilung
|2 gnd
|
650 |
|
7 |
|a Dynamisches Modell
|2 gnd
|
776 |
0 |
8 |
|i Print version:
|a Harvey, A.C. (Andrew C.).
|t Dynamic models for volatility and heavy tails
|z 9781107034723
|w (DLC) 2012036508
|w (OCoLC)811777444
|
830 |
|
0 |
|a Econometric Society monographs ;
|v no. 52.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=533825
|z Texto completo
|
880 |
0 |
0 |
|6 505-01/(S
|g Machine generated contents note:
|g 1.1.
|t Unobserved Components and Filters --
|g 1.2.
|t Independence, White Noise and Martingale Differences --
|g 1.2.1.
|t Law of Iterated Expectations and Optimal Predictions --
|g 1.2.2.
|t Definitions and Properties --
|g 1.3.
|t Volatility --
|g 1.3.1.
|t Stochastic Volatility --
|g 1.3.2.
|t Generalized Autoregressive Conditional Heteroscedasticity --
|g 1.3.3.
|t Exponential GARCH --
|g 1.3.4.
|t Variance, Scale and Outliers --
|g 1.3.5.
|t Location/Scale Models --
|g 1.4.
|t Dynamic Conditional Score Models --
|g 1.5.
|t Distributions and Quantiles --
|g 1.6.
|t Plan of Book --
|g 2.1.
|t Distributions --
|g 2.1.1.
|t Student's t Distribution --
|g 2.1.2.
|t General Error Distribution --
|g 2.1.3.
|t Beta Distribution --
|g 2.1.4.
|t Gamma Distribution --
|g 2.2.
|t Maximum Likelihood --
|g 2.2.1.
|t Student's t Distribution --
|g 2.2.2.
|t General Error Distribution --
|g 2.2.3.
|t Gamma Distribution --
|g 2.2.4.
|t Consistency and Asymptotic Normality* --
|g 2.3.
|t Maximum Likelihood Estimation of Dynamic Conditional Score Models --
|g 2.3.1.
|t Information Matrix Lemma --
|g 2.3.2.
|t Information Matrix for the First-Order Model --
|g 2.3.3.
|t Information Matrix with the δ Parameterization* --
|g 2.3.4.
|t Asymptotic Distribution --
|g 2.3.5.
|t Consistency and Asymptotic Normality* --
|g 2.3.6.
|t Nonstationarity --
|g 2.3.7.
|t Several Parameters --
|g 2.4.
|t Higher Order Models* --
|g 2.5.
|t Tests --
|g 2.5.1.
|t Serial Correlation --
|g 2.5.2.
|t Goodness of Fit of Distributions --
|g 2.5.3.
|t Residuals --
|g 2.5.4.
|t Model Fit --
|g 2.6.
|t Explanatory Variables --
|g 3.1.
|t Dynamic Student's t Location Model --
|g 3.2.
|t Basic Properties --
|g 3.2.1.
|t Generalization and Reduced Form --
|g 3.2.2.
|t Moments of the Observations --
|g 3.2.3.
|t Autocorrelation Function --
|g 3.3.
|t Maximum Likelihood Estimation --
|g 3.3.1.
|t Asymptotic Distribution of the Maximum Likelihood Estimator --
|g 3.3.2.
|t Monte Carlo Experiments --
|g 3.3.3.
|t Application to U.S. GDP --
|g 3.4.
|t Parameter Restrictions* --
|g 3.5.
|t Higher Order Models and the State Space Form* --
|g 3.5.1.
|t Linear Gaussian Models and the Kalman Filter --
|g 3.5.2.
|t DCS Model --
|g 3.5.3.
|t QARMA Models --
|g 3.6.
|t Trend and Seasonality --
|g 3.6.1.
|t Local Level Model --
|g 3.6.2.
|t Application to Weekly Hours of Employees in U.S. Manufacturing --
|g 3.6.3.
|t Local Linear Trend --
|g 3.6.4.
|t Stochastic Seasonal --
|g 3.6.5.
|t Application to Rail Travel --
|g 3.6.6.
|t QARIMA and Seasonal QARIMA Models* --
|g 3.7.
|t Smoothing --
|g 3.7.1.
|t Weights --
|g 3.7.2.
|t Smoothing Recursions for Linear State Space Models --
|g 3.7.3.
|t Smoothing Recursions for DCS Models --
|g 3.7.4.
|t Conditional Mode Estimation and the Score --
|g 3.8.
|t Forecasting --
|g 3.8.1.
|t QARMA Models --
|g 3.8.2.
|t State Space Form* --
|g 3.9.
|t Components and Long Memory --
|g 3.10.
|t General Error Distribution --
|g 3.11.
|t Skew Distributions --
|g 3.11.1.
|t How to Skew a Distribution --
|g 3.11.2.
|t Dynamic Skew-t Location Model --
|g 4.1.
|t Beta-t-EGARCH --
|g 4.2.
|t Properties of Stationary Beta-t-EGARCH Models --
|g 4.2.1.
|t Exponential GARCH --
|g 4.2.2.
|t Moments --
|g 4.2.3.
|t Autocorrelation Functions of Squares and Powers of Absolute Values --
|g 4.2.4.
|t Autocorrelations and Kurtosis --
|g 4.3.
|t Leverage Effects --
|g 4.4.
|t Gamma-GED-EGARCH --
|g 4.5.
|t Forecasting --
|g 4.5.1.
|t Beta-t-EGARCH --
|g 4.5.2.
|t Gamma-GED-EGARCH --
|g 4.5.3.
|t Integrated Exponential Models --
|g 4.5.4.
|t Predictive Distribution --
|g 4.6.
|t Maximum Likelihood Estimation and Inference --
|g 4.6.1.
|t Asymptotic Theory for Beta-t-EGARCH --
|g 4.6.2.
|t Monte Carlo Experiments --
|g 4.6.3.
|t Gamma-GED-EGARCH --
|g 4.6.4.
|t Leverage --
|g 4.7.
|t Beta-t-GARCH --
|g 4.7.1.
|t Properties of First-Order Model --
|g 4.7.2.
|t Leverage Effects --
|g 4.7.3.
|t Link with Beta-t-EGARCH --
|g 4.7.4.
|t Estimation and Inference --
|g 4.7.5.
|t Gamma-GED-GARCH --
|g 4.8.
|t Smoothing --
|g 4.9.
|t Application to Hang Seng and Dow Jones --
|g 4.10.
|t Two Component Models --
|g 4.11.
|t Trends, Seasonals and Explanatory Variables in Volatility Equations --
|g 4.12.
|t Changing Location --
|g 4.12.1.
|t Explanatory Variables --
|g 4.12.2.
|t Stochastic Location and Stochastic Scale --
|g 4.13.
|t Testing for Changing Volatility and Leverage --
|g 4.13.1.
|t Portmanteau Test for Changing Volatility --
|g 4.13.2.
|t Martingale Difference Test --
|g 4.13.3.
|t Leverage --
|g 4.13.4.
|t Diagnostics --
|g 4.14.
|t Skew Distributions --
|g 4.15.
|t Time-Varying Skewness and Kurtosis* --
|g 5.1.
|t General Properties --
|g 5.1.1.
|t Heavy Tails --
|g 5.1.2.
|t Moments and Autocorrelations --
|g 5.1.3.
|t Forecasts --
|g 5.1.4.
|t Asymptotic Distribution of Maximum Likelihood Estimators --
|g 5.2.
|t Generalized Gamma Distribution --
|g 5.2.1.
|t Moments --
|g 5.2.2.
|t Forecasts --
|g 5.2.3.
|t Maximum Likelihood Estimation --
|g 5.3.
|t Generalized Beta Distribution --
|g 5.3.1.
|t Log-Logistic Distribution --
|g 5.3.2.
|t Moments, Autocorrelations and Forecasts --
|g 5.3.3.
|t Maximum Likelihood Estimation --
|g 5.3.4.
|t Burr Distribution --
|g 5.3.5.
|t Generalized Pareto Distribution --
|g 5.3.6.
|t F Distribution --
|g 5.4.
|t Log-Normal Distribution --
|g 5.5.
|t Monte Carlo Experiments --
|g 5.6.
|t Leverage, Long Memory and Diurnal Variation --
|g 5.7.
|t Tests and Model Selection --
|g 5.8.
|t Estimating Volatility from the Range --
|g 5.8.1.
|t Application to Paris CAC and Dow Jones --
|g 5.8.2.
|t Range-EGARCH Model --
|g 5.9.
|t Duration --
|g 5.10.
|t Realized Volatility --
|g 5.11.
|t Count Data and Qualitative Observations --
|g 6.1.
|t Kernel Density Estimation for Time Series --
|g 6.1.1.
|t Filtering and Smoothing --
|g 6.1.2.
|t Estimation --
|g 6.1.3.
|t Correcting for Changing Mean and Variance --
|g 6.1.4.
|t Specification and Diagnostic Checking --
|g 6.2.
|t Time-Varying Quantiles --
|g 6.2.1.
|t Kernel-Based Estimation --
|g 6.2.2.
|t Direct Estimation of Individual Quantiles --
|g 6.3.
|t Forecasts --
|g 6.4.
|t Application to NASDAQ Returns --
|g 6.4.1.
|t Direct Modelling of Returns --
|g 6.4.2.
|t ARMA-GARCH Residuals --
|g 6.4.3.
|t Bandwidth and Tails --
|g 7.1.
|t Multivariate Distributions --
|g 7.1.1.
|t Estimation --
|g 7.1.2.
|t Regression --
|g 7.1.3.
|t Dynamic Models --
|g 7.2.
|t Multivariate Location Models --
|g 7.2.1.
|t Structural Time Series Models --
|g 7.2.2.
|t DCS Model for the Multivariate t --
|g 7.2.3.
|t Asymptotic Theory* --
|g 7.2.4.
|t Regression and Errors in Variables --
|g 7.3.
|t Dynamic Correlation --
|g 7.3.1.
|t Bivariate Gaussian Model --
|g 7.3.2.
|t Time-Varying Parameters in Regression --
|g 7.3.3.
|t Multivariate t Distribution --
|g 7.3.4.
|t Tests of Changing Correlation --
|g 7.4.
|t Dynamic Multivariate Scale --
|g 7.5.
|t Dynamic Scale and Association --
|g 7.6.
|t Copulas --
|g 7.6.1.
|t Copulas and Quantiles --
|g 7.6.2.
|t Measures of Association --
|g 7.6.3.
|t Maximum Likelihood Estimation --
|g 7.6.4.
|t Dynamic Copulas --
|g 7.6.5.
|t Tests Against Changing Association --
|g A.1.
|t Unconditional Mean Parameterization --
|g A.2.
|t Paramerization with δ --
|g A.3.
|t Leverage --
|g B.1.
|t Beta-t-EGARCH --
|g B.2.
|t Gamma-GED-EGARCH --
|g B.3.
|t Beta-t-GARCH.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH34207425
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 26124643
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1139620
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 533825
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis26124643
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11088561
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10706099
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11120126
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11088762
|
994 |
|
|
|a 92
|b IZTAP
|