Cargando…

Real analysis /

"Aimed at advanced undergraduates and beginning graduate students, Real Analysis offers a rigorous yet accessible course in the subject. Carothers, presupposing only a modest background in real analysis or advanced calculus, writes with an informal style and incorporates historical commentary a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Carothers, N. L., 1952-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [UK] ; New York : Cambridge University Press, 2000.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Part 1 Metric Spaces
  • 1 Calculus Review 3
  • Real Numbers 3
  • Limits and Continuity 14
  • 2 Countable and Uncountable Sets 18
  • Equivalence and Cardinality 18
  • Cantor Set 25
  • Monotone Functions 31
  • 3 Metrics and Norms 36
  • Metric Spaces 37
  • Normed Vector Spaces 39
  • More Inequalities 43
  • Limits in Metric Spaces 45
  • 4 Open Sets and Closed Sets 51
  • Open Sets 51
  • Closed Sets 53
  • Relative Metric 60
  • 5 Continuity 63
  • Continuous Functions 63
  • Homeomorphisms 69
  • Space of Continuous Functions 73
  • 6 Connectedness 78
  • Connected Sets 78
  • 7 Completeness 89
  • Totally Bounded Sets 89
  • Complete Metric Spaces 92
  • Fixed Points 97
  • Completions 102
  • 8 Compactness 108
  • Compact Metric Spaces 108
  • Uniform Continuity 114
  • Equivalent Metrics 120
  • 9 Category 128
  • Discontinuous Functions 128
  • Baire Category Theorem 131
  • Part 2 Function Spaces
  • 10 Sequences of Functions 139
  • Historical Background 139
  • Pointwise and Uniform Convergence 143
  • Interchanging Limits 150
  • Space of Bounded Functions 153
  • 11 Space of Continuous Functions 162
  • Weierstrass Theorem 162
  • Trigonometric Polynomials 170
  • Infinitely Differentiable Functions 176
  • Equicontinuity 178
  • Continuity and Category 183
  • 12 Stone-Weierstrass Theorem 188
  • Algebras and Lattices 188
  • Stone-Weierstrass Theorem 194
  • 13 Functions of Bounded Variation 202
  • Functions of Bounded Variation 202
  • Helly's First Theorem 210
  • 14 Riemann-Stieltjes Integral 214
  • Weights and Measures 214
  • Riemann-Stieltjes Integral 215
  • Space of Integrable Functions 221
  • Integrators of Bounded Variation 225
  • Riemann Integral 232
  • Riesz Representation Theorem 234
  • Other Definitions, Other Properties 239
  • 15 Fourier Series 244
  • Dirichlet's Formula 250
  • Fejer's Theorem 254
  • Complex Fourier Series 257
  • Part 3 Lebesgue Measure and Integration
  • 16 Lebesgue Measure 263
  • Problem of Measure 263
  • Lebesgue Outer Measure 268
  • Riemann Integrability 274
  • Measurable Sets 277
  • Structure of Measurable Sets 283
  • A Nonmeasurable Set 289
  • Other Definitions 292
  • 17 Measurable Functions 296
  • Measurable Functions 296
  • Extended Real-Valued Functions 302
  • Sequences of Measurable Functions 304
  • Approximation of Measurable Functions 306
  • 18 Lebesgue Integral 312
  • Simple Functions 312
  • Nonnegative Functions 314
  • General Case 322
  • Lebesgue's Dominated Convergence Theorem 328
  • Approximation of Integrable Functions 333
  • 19 Additional Topics 337
  • Convergence in Measure 337
  • L[subscript p] Spaces 342
  • Approximation of L[subscript p] Functions 350
  • More on Fourier Series 352
  • 20 Differentiation 359
  • Lebesgue's Differentiation Theorem 359
  • Absolute Continuity 370.