Cargando…

Bombay lectures on highest weight representations of infinite dimensional lie algebras /

The first edition of this book is a collection of a series of lectures given by Professor Victor Kac at the TIFR, Mumbai, India in December 1985 and January 1986. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations. The first is the can...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kac, Victor G., 1943- (Autor), Raina, A. K. (Autor), Rozhkovskaya, Natasha (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, New Jersey : World Scientific, [2013]
Edición:Second edition.
Colección:Advanced series in mathematical physics ; v. 29.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn855505002
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mn|||||||||
008 130810t20132013nju ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d OCLCO  |d IDEBK  |d N$T  |d STF  |d DEBSZ  |d ZCU  |d OSU  |d OCLCQ  |d GGVRL  |d YDXCP  |d OCLCQ  |d OCLCF  |d MYG  |d OCLCQ  |d AGLDB  |d LIP  |d MERUC  |d OCLCQ  |d U3W  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9789814522205  |q (electronic bk.) 
020 |a 9814522201  |q (electronic bk.) 
020 |z 9789814522182  |q (hbk.) 
020 |z 981452218X  |q (hbk.) 
020 |z 9789814522199  |q (pbk.) 
020 |z 9814522198  |q (pbk.) 
029 1 |a AU@  |b 000054195067 
029 1 |a DEBBG  |b BV043039287 
029 1 |a DEBBG  |b BV044177175 
029 1 |a DEBSZ  |b 392869594 
029 1 |a DEBSZ  |b 421244461 
029 1 |a DEBSZ  |b 454905998 
035 |a (OCoLC)855505002 
050 4 |a QA252.3  |b .K33 2013eb 
072 7 |a SCI  |x 004000  |2 bisacsh 
082 0 4 |a 520  |2 22 
049 |a UAMI 
100 1 |a Kac, Victor G.,  |d 1943-  |e author. 
245 1 0 |a Bombay lectures on highest weight representations of infinite dimensional lie algebras /  |c Victor G. Kac, Ashok K. Raina, Natasha Rozhkovskaya. 
250 |a Second edition. 
264 1 |a Hackensack, New Jersey :  |b World Scientific,  |c [2013] 
264 4 |c ©2014 
300 |a 1 online resource (xii, 237 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advanced series in mathematical physics ;  |v vol. 29 
520 |a The first edition of this book is a collection of a series of lectures given by Professor Victor Kac at the TIFR, Mumbai, India in December 1985 and January 1986. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations. The first is the canonical commutation relations of the infinite dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gl 8 of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kas. 
504 |a Includes bibliographical references (pages 229-234) and index. 
505 0 |a Lecture 1. 1.1. The Lie algebra [symbol] of complex vector fields on the circle. 1.2. Representations V[symbol] of [symbol]. 1.3. Central extensions of [symbol]: the Virasoro algebra -- Lecture 2. 2.1. Definition of positive-energy representations of Vir. 2.2. Oscillator algebra [symbol]. 2.3. Oscillator representations of Vir -- Lecture 3. 3.1. Complete reducibility of the oscillator representations of Vir. 3.2. Highest weight representations of Vir. 3.3. Verma representations M(c, h) and irreducible highest weight representations V (c, h) of Vir. 3.4. More (unitary) oscillator representations of Vir -- Lecture 4. 4.1. Lie algebras of infinite matrices. 4.2. Infinite wedge space F and the Dirac positron theory. 4.3. Representations of GL[symbol] and gl[symbol] F. Unitarity of highest weight representations of gl[symbol]. 4.4. Representation of a[symbol] in F. 4.5. Representations of Vir in F -- Lecture 5. 5.1. Boson-fermion correspondence. 5.2. Wedging and contracting operators. 5.3. Vertex operators. The first part of the boson-fermion correspondence. 5.4. Vertex operator representations of gl[symbol] and a[symbol] -- Lecture 6. 6.1. Schur polynomials. 6.2. The second part of the boson-fermion correspondence. 6.3. An application: structure of the Virasoro representations for c = 1 -- Lecture 7. 7.1. Orbit of the vacuum vector under GL[symbol]. 7.2. Defining equations for [symbol] in F[symbol]. 7.3. Differential equations for [symbol] in [symbol]]. 7.4. Hirota's bilinear equations. 7.5. The KP hierarchy. 7.6. N-soliton solutions -- Lecture 8. 8.1. Degenerate representations and the determinant det[symbol](c, h) of the contravariant form. 8.2. The determinant det[symbol](c, h) as a polynomial in h. 8.3. The Kac determinant formula. 8.4. Some consequences of the determinant formula for unitarity and degeneracy -- Lecture 9. 9.1. Representations of loop algebras in ā[symbol]. 9.2. Representations of [symbol] in F[symbol]. 9.3. The invariant bilinear form on [symbol]. The action of [symbol] on [symbol]. 9.4. Reduction from a[symbol] to [symbol] and the unitarity of highest weight representations of [symbol]. 
505 8 |a Lecture 10. 10.1. Nonabelian generalization of Virasoro operators: the Sugawara construction. 10.2. The Goddard-Kent-Olive construction -- Lecture 11. 11.1. [symbol] and its Weyl group. 11.2. The Weyl-Kac character formula and Jacobi-Riemann theta functions. 11.3. A character identity -- Lecture 12. 12.1. Preliminaries on [symbol]. 12.2. A tensor product decomposition of some representations of [symbol]. 12.3. Construction and unitarity of the discrete series representations of Vir. 12.4. Completion of the proof of the Kac determinant formula. 12.5. On non-unitarity in the region 0 [symbol] 0 -- Lecture 13. 13.1. Formal distributions. 13.2. Local pairs of formal distributions. 13.3. Formal Fourier transform. 13.4. Lambda-bracket of local formal distributions -- Lecture 14. 14.1. Completion of U, restricted representations and quantum fields. 14.2. Normal ordered product -- Lecture 15. 15.1. Non-commutative Wick formula. 15.2. Virasoro formal distribution for free boson. 15.3. Virasoro formal distribution for neutral free fermions. 15.4. Virasoro formal distribution for charged free fermions -- Lecture 16. 16.1. Conformal weights. 16.2. Sugawara construction. 16.3. Bosonization of charged free fermions. 16.4. Irreducibility theorem for the charge decomposition. 16.5. An application: the Jacobi triple product identity. 16.6. Restricted representations of free fermions -- Lecture 17. 17.1. Definition of a vertex algebra. 17.2. Existence Theorem. 17.3. Examples of vertex algebras. 17.4. Uniqueness Theorem and n-th product identity. 17.5. Some constructions. 17.6. Energy-momentum fields. 17.7. Poisson like definition of a vertex algebra. 17.8. Borcherds identity -- Lecture 18. 18.1. Definition of a representation of a vertex algebra. 18.2. Representations of the universal vertex algebras. 18.3. On representations of simple vertex algebras. 18.4. On representations of simple affine vertex algebras. 18.5. The Zhu algebra method. 18.6. Twisted representations. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Infinite dimensional Lie algebras. 
650 0 |a Quantum field theory. 
650 6 |a Algèbres de Lie de dimension infinie. 
650 6 |a Théorie quantique des champs. 
650 7 |a SCIENCE  |x Astronomy.  |2 bisacsh 
650 7 |a Infinite dimensional Lie algebras  |2 fast 
650 7 |a Quantum field theory  |2 fast 
700 1 |a Raina, A. K.,  |e author. 
700 1 |a Rozhkovskaya, Natasha,  |e author. 
776 0 8 |i Print version:  |a Kac, Victor G., 1943-  |t Bombay lectures on highest weight representations of infinite dimensional lie algebras.  |b Second edition.  |d Hackensack, New Jersey : World Scientific, [2013]  |z 9789814522182  |w (DLC) 2013427978  |w (OCoLC)858312870 
830 0 |a Advanced series in mathematical physics ;  |v v. 29. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=622047  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25565516 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1336548 
938 |a EBSCOhost  |b EBSC  |n 622047 
938 |a Cengage Learning  |b GVRL  |n GVRL8RFP 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26005514 
938 |a YBP Library Services  |b YANK  |n 10925657 
994 |a 92  |b IZTAP