Cargando…

Gibbs measures on Cayley trees /

The purpose of this book is to present systematically all known mathematical results on Gibbs measures on Cayley trees (Bethe lattices). The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rozikov, Utkir A., 1970- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Hackensack] New Jersey : World Scientific, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn855022908
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130805s2013 nju ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d IDEBK  |d OCLCA  |d CDX  |d YDXCP  |d STF  |d ZCU  |d OCLCF  |d GGVRL  |d EBLCP  |d DEBSZ  |d OCLCQ  |d CUS  |d JBG  |d COCUF  |d AGLDB  |d MERUC  |d OCLCQ  |d U3W  |d VTS  |d INT  |d OCLCQ  |d WYU  |d VT2  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 855505006  |a 861257286  |a 1066010931  |a 1081241607 
020 |a 9789814513388  |q (electronic bk.) 
020 |a 9814513385  |q (electronic bk.) 
020 |z 9789814513371 
020 |z 9814513377 
029 1 |a AU@  |b 000052905229 
029 1 |a DEBBG  |b BV043062277 
029 1 |a DEBBG  |b BV044177178 
029 1 |a DEBSZ  |b 392869624 
029 1 |a DEBSZ  |b 421244534 
029 1 |a DEBSZ  |b 454999054 
029 1 |a GBVCP  |b 804845123 
029 1 |a NZ1  |b 15905422 
029 1 |a AU@  |b 000073141066 
035 |a (OCoLC)855022908  |z (OCoLC)855505006  |z (OCoLC)861257286  |z (OCoLC)1066010931  |z (OCoLC)1081241607 
050 4 |a QA273.6  |b .R69 2013eb 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
049 |a UAMI 
100 1 |a Rozikov, Utkir A.,  |d 1970-  |e author. 
245 1 0 |a Gibbs measures on Cayley trees /  |c by Utkir A. Rozikov (Institute of Mathematics, Uzbekistan). 
264 1 |a [Hackensack] New Jersey :  |b World Scientific,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a 1. Group representation of the Cayley tree. 1.1. Cayley tree. 1.2. A group representation of the Cayley tree. 1.3. Normal subgroups of finite index for the group representation of the Cayley tree. 1.4. Partition structures of the Cayley tree. 1.5. Density of edges in a ball -- 2. Ising model on the Cayley tree. 2.1. Gibbs measure. 2.2. A functional equation for the Ising model. 2.3. Periodic Gibbs measures of the Ising model. 2.4. Weakly periodic Gibbs measures. 2.5. Extremality of the disordered Gibbs measure. 2.6. Uncountable sets of non-periodic Gibbs measures. 2.7. New Gibbs measures. 2.8. Free energies. 2.9. Ising model with an external field -- 3. Ising type models with competing interactions. 3.1. Vannimenus model. 3.2. A model with four competing interactions -- 4. Information flow on trees. 4.1. Definitions and their equivalency. 4.2. Symmetric binary channels: the Ising model. 4.3. q-ary symmetric channels: the Potts model -- 5. The Potts model. 5.1. The Hamiltonian and vector-valued functional equation. 5.2. Translation-invariant Gibbs measures. 5.3. Extremality of the disordered Gibbs measure: the reconstruction solvability. 5.4. A construction of an uncountable set of Gibbs measures -- 6. The Solid-on-Solid model. 6.1. The model and a system of vector-valued functional equations. 6.2. Three-state SOS model. 6.3. Four-state SOS model -- 7. Models with hard constraints. 7.1. Definitions. 7.2. Two-state hard core model. 7.3. Node-weighted random walk as a tool. 7.4. A Gibbs measure associated to a k-branching nodeweighted random walk. 7.5. Cases of uniqueness of Gibbs measure. 7.6. Non-uniqueness of Gibbs measure: sterile and fertile graphs. 7.7. Fertile three-state hard core models. 7.8. Eight state hard-core model associated to a model with interaction radius two -- 8. Potts model with countable set of spin values. 8.1. An infinite system of functional equations. 8.2. Translation-invariant solutions. 8.3. Exponential solutions -- 9. Models with uncountable set of spin values. 9.1. Definitions. 9.2. An integral equation. 9.3. Translational-invariant solutions. 9.4. A sufficient condition of uniqueness. 9.5. Examples of Hamiltonians with non-unique Gibbs measure -- 10. Contour arguments on Cayley trees. 10.1. One-dimensional models. 10.2. q-component models. 10.3. An Ising model with competing two-step interactions. 10.4. Finite-range models: general contours -- 11. Other models. 11.1. Inhomogeneous Ising model. 11.2. Random field Ising model. 11.3. Ashkin-Teller model. 11.4. Spin glass model. 11.5. Abelian sandpile model. 11.6. Z(M) (or clock) models. 11.7. The planar rotator model. 11.8. O(n, 1)-model. 11.9. Supersymmetric O(n, 1) model. 11.10. The review of remaining models. 
520 |a The purpose of this book is to present systematically all known mathematical results on Gibbs measures on Cayley trees (Bethe lattices). The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure associated with the Hamiltonian of a physical system (a model) and generalizes the notion of a canonical ensemble. More importantly, when the Hamiltonian can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics such as biology, Hopfield networks, Markov networks, and Markov logic networks. Moreover, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy. The method used for the description of Gibbs measures on Cayley trees is the method of Markov random field theory and recurrent equations of this theory, but the modern theory of Gibbs measures on trees uses new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on trees, and nonlinear analysis. This book discusses all the mentioned methods, which were developed recently. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Probability measures. 
650 0 |a Distribution (Probability theory) 
650 6 |a Mesures de probabilités. 
650 6 |a Distribution (Théorie des probabilités) 
650 7 |a distribution (statistics-related concept)  |2 aat 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Distribution (Probability theory)  |2 fast 
650 7 |a Probability measures  |2 fast 
776 0 8 |i Print version:  |a Rozikov, Utkir A., 1970-  |t Gibbs measures on Cayley trees.  |d [Hackensack] New Jersey : World Scientific, 2013  |z 9789814513371  |w (DLC) 2013014066  |w (OCoLC)844073549 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=622028  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25565511 
938 |a Coutts Information Services  |b COUT  |n 26005571 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1336552 
938 |a EBSCOhost  |b EBSC  |n 622028 
938 |a Cengage Learning  |b GVRL  |n GVRL8RHT 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26005571 
938 |a YBP Library Services  |b YANK  |n 10925656 
994 |a 92  |b IZTAP